Hutch++: Optimal Stochastic Trace Estimation
- URL: http://arxiv.org/abs/2010.09649v5
- Date: Fri, 11 Jun 2021 01:33:47 GMT
- Title: Hutch++: Optimal Stochastic Trace Estimation
- Authors: Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff
- Abstract summary: We introduce a new randomized algorithm, Hutch++, which computes a $(1 pm epsilon)$ approximation to $tr(A)$ for any positive semidefinite (PSD) $A$.
We show that it significantly outperforms Hutchinson's method in experiments.
- Score: 75.45968495410048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of estimating the trace of a matrix $A$ that can only be
accessed through matrix-vector multiplication. We introduce a new randomized
algorithm, Hutch++, which computes a $(1 \pm \epsilon)$ approximation to
$tr(A)$ for any positive semidefinite (PSD) $A$ using just $O(1/\epsilon)$
matrix-vector products. This improves on the ubiquitous Hutchinson's estimator,
which requires $O(1/\epsilon^2)$ matrix-vector products. Our approach is based
on a simple technique for reducing the variance of Hutchinson's estimator using
a low-rank approximation step, and is easy to implement and analyze. Moreover,
we prove that, up to a logarithmic factor, the complexity of Hutch++ is optimal
amongst all matrix-vector query algorithms, even when queries can be chosen
adaptively. We show that it significantly outperforms Hutchinson's method in
experiments. While our theory mainly requires $A$ to be positive semidefinite,
we provide generalized guarantees for general square matrices, and show
empirical gains in such applications.
Related papers
- Optimal Quantization for Matrix Multiplication [35.007966885532724]
We present a universal quantizer based on nested lattices with an explicit guarantee of approximation error for any (non-random) pair of matrices $A$, $B$ in terms of only Frobenius norms $|A|_F, |B|_F$ and $|Atop B|_F$.
arXiv Detail & Related papers (2024-10-17T17:19:48Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
We propose a first-order algorithm named $B$-sample dual averaging with the logarithmic barrier.
For the Poisson inverse problem, our algorithm attains an $varepsilon$ solution in $smashtildeO(d3/varepsilon2)$ time.
When computing the maximum-likelihood estimate for quantum state tomography, our algorithm yields an $varepsilon$-optimal solution in $smashtildeO(d3/varepsilon2)$ time.
arXiv Detail & Related papers (2023-11-05T03:33:44Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly.
We provide a novel binary tree summation procedure that simultaneously estimates all $m$ traces up to $epsilon$ error with $delta$ failure probability.
Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error even in the static setting, and (2) are the first unconditional lower bounds for dynamic trace estimation.
arXiv Detail & Related papers (2022-09-30T04:15:44Z) - Kernel Packet: An Exact and Scalable Algorithm for Gaussian Process
Regression with Mat\'ern Correlations [23.560067934682294]
We develop an exact and scalable algorithm for one-dimensional Gaussian process regression with Mat'ern correlations.
The proposed algorithm is significantly superior to the existing alternatives in both the computational time and predictive accuracy.
arXiv Detail & Related papers (2022-03-07T03:30:35Z) - Computationally Efficient Approximations for Matrix-based Renyi's
Entropy [33.72108955447222]
Recently developed matrix based Renyi's entropy enables measurement of information in data.
computation of such quantity involves the trace operator on a PSD matrix $G$ to power $alpha$(i.e., $tr(Galpha)$.
We present computationally efficient approximations to this new entropy functional that can reduce its complexity to even significantly less than $O(n2)$.
arXiv Detail & Related papers (2021-12-27T14:59:52Z) - Efficient Matrix-Free Approximations of Second-Order Information, with
Applications to Pruning and Optimization [16.96639526117016]
We investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs)
These algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods.
arXiv Detail & Related papers (2021-07-07T17:01:34Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.