Data Assimilation Networks
- URL: http://arxiv.org/abs/2010.09694v3
- Date: Thu, 25 May 2023 06:52:42 GMT
- Title: Data Assimilation Networks
- Authors: Pierre Boudier and Anthony Fillion and Serge Gratton and Selime
G\"urol and Sixin Zhang
- Abstract summary: Data assimilation aims at forecasting the state of a dynamical system by combining a mathematical representation of the system with noisy observations.
We propose a fully data driven deep learning architecture generalizing recurrent Elman networks and data assimilation algorithms.
Our architecture achieves comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state at a given time without using any explicit regularization technique.
- Score: 1.5545257664210517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data assimilation (DA) aims at forecasting the state of a dynamical system by
combining a mathematical representation of the system with noisy observations
taking into account their uncertainties. State of the art methods are based on
the Gaussian error statistics and the linearization of the non-linear dynamics
which may lead to sub-optimal methods. In this respect, there are still open
questions how to improve these methods. In this paper, we propose a fully data
driven deep learning architecture generalizing recurrent Elman networks and
data assimilation algorithms which approximate a sequence of prior and
posterior densities conditioned on noisy observations. By construction our
approach can be used for general nonlinear dynamics and non-Gaussian densities.
On numerical experiments based on the well-known Lorenz-95 system and with
Gaussian error statistics, our architecture achieves comparable performance to
EnKF on both the analysis and the propagation of probability density functions
of the system state at a given time without using any explicit regularization
technique.
Related papers
- Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Gaussian process learning of nonlinear dynamics [0.0]
We propose a new method that learns nonlinear dynamics through a Bayesian inference of characterizing model parameters.
We will discuss the applicability of the proposed method to several typical scenarios for dynamical systems.
arXiv Detail & Related papers (2023-12-19T14:27:26Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
We infer equations with non-Gaussian L'evy noise from available data to reasonably predict dynamical behaviors.
We establish a theoretical framework and design a numerical algorithm to compute the asymmetric L'evy jump measure, drift and diffusion.
This method will become an effective tool in discovering the governing laws from available data sets and in understanding the mechanisms underlying complex random phenomena.
arXiv Detail & Related papers (2021-07-21T14:50:36Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
This paper presents a machine learning framework (GP-NODE) for Bayesian systems identification from partial, noisy and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
A series of numerical studies is presented to demonstrate the effectiveness of the proposed GP-NODE method including predator-prey systems, systems biology, and a 50-dimensional human motion dynamical system.
arXiv Detail & Related papers (2021-03-04T23:42:14Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.