(How) Do people change their passwords after a breach?
- URL: http://arxiv.org/abs/2010.09853v1
- Date: Mon, 19 Oct 2020 20:44:25 GMT
- Title: (How) Do people change their passwords after a breach?
- Authors: Sruti Bhagavatula, Lujo Bauer, Apu Kapadia
- Abstract summary: New passwords were on average 1.3x stronger than old passwords.
New passwords were overall more similar to participants' other passwords.
Results highlight the need for more rigorous password-changing requirements.
- Score: 9.750563575752956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To protect against misuse of passwords compromised in a breach, consumers
should promptly change affected passwords and any similar passwords on other
accounts. Ideally, affected companies should strongly encourage this behavior
and have mechanisms in place to mitigate harm. In order to make recommendations
to companies about how to help their users perform these and other
security-enhancing actions after breaches, we must first have some
understanding of the current effectiveness of companies' post-breach practices.
To study the effectiveness of password-related breach notifications and
practices enforced after a breach, we examine---based on real-world password
data from 249 participants---whether and how constructively participants
changed their passwords after a breach announcement.
Of the 249 participants, 63 had accounts on breached domains; only 33% of the
63 changed their passwords and only 13% (of 63) did so within three months of
the announcement. New passwords were on average 1.3x stronger than old
passwords (when comparing log10-transformed strength), though most were weaker
or of equal strength. Concerningly, new passwords were overall more similar to
participants' other passwords, and participants rarely changed passwords on
other sites even when these were the same or similar to their password on the
breached domain. Our results highlight the need for more rigorous
password-changing requirements following a breach and more effective breach
notifications that deliver comprehensive advice.
Related papers
- PassTSL: Modeling Human-Created Passwords through Two-Stage Learning [7.287089766975719]
We propose PassTSL (modeling human-created Passwords through Two-Stage Learning), inspired by the popular pretraining-finetuning framework in NLP and deep learning (DL)
PassTSL outperforms five state-of-the-art (SOTA) password cracking methods on password guessing by a significant margin ranging from 4.11% to 64.69% at the maximum point.
Based on PassTSL, we also implemented a password strength meter (PSM), and our experiments showed that it was able to estimate password strength more accurately.
arXiv Detail & Related papers (2024-07-19T09:23:30Z) - Nudging Users to Change Breached Passwords Using the Protection Motivation Theory [58.87688846800743]
We draw on the Protection Motivation Theory (PMT) to design nudges that encourage users to change breached passwords.
Our study contributes to PMT's application in security research and provides concrete design implications for improving compromised credential notifications.
arXiv Detail & Related papers (2024-05-24T07:51:15Z) - Passwords Are Meant to Be Secret: A Practical Secure Password Entry Channel for Web Browsers [7.049738935364298]
Malicious client-side scripts and browser extensions can steal passwords after they have been autofilled by the manager into the web page.
This paper explores what role the password manager can take in preventing the theft of autofilled credentials without requiring a change to user behavior.
arXiv Detail & Related papers (2024-02-09T03:21:14Z) - PassGPT: Password Modeling and (Guided) Generation with Large Language
Models [59.11160990637616]
We present PassGPT, a large language model trained on password leaks for password generation.
We also introduce the concept of guided password generation, where we leverage PassGPT sampling procedure to generate passwords matching arbitrary constraints.
arXiv Detail & Related papers (2023-06-02T13:49:53Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor.
Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space.
arXiv Detail & Related papers (2023-03-09T11:03:52Z) - Targeted Honeyword Generation with Language Models [5.165256397719443]
Honeywords are fictitious passwords inserted into databases to identify password breaches.
Major difficulty is how to produce honeywords that are difficult to distinguish from real passwords.
arXiv Detail & Related papers (2022-08-15T00:06:29Z) - GNPassGAN: Improved Generative Adversarial Networks For Trawling Offline
Password Guessing [5.165256397719443]
This paper reviews various deep learning-based password guessing approaches.
It also introduces GNPassGAN, a password guessing tool built on generative adversarial networks for trawling offline attacks.
In comparison to the state-of-the-art PassGAN model, GNPassGAN is capable of guessing 88.03% more passwords and generating 31.69% fewer duplicates.
arXiv Detail & Related papers (2022-08-14T23:51:52Z) - Skeptic: Automatic, Justified and Privacy-Preserving Password Composition Policy Selection [44.040106718326605]
The choice of password composition policy to enforce on a password-protected system represents a critical security decision.
In practice, this choice is not usually rigorous or justifiable, with a tendency for system administrators to choose password composition policies based on intuition alone.
We propose a novel methodology that draws on password probability distributions constructed from large sets of real-world password data.
arXiv Detail & Related papers (2020-07-07T22:12:13Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z) - Lost in Disclosure: On The Inference of Password Composition Policies [43.17794589897313]
We study how password composition policies influence the distribution of user-chosen passwords on a system.
We suggest a simple approach that produces more reliable results.
We present pol-infer, a tool that implements this approach, and demonstrates its use inferring password composition policies.
arXiv Detail & Related papers (2020-03-12T15:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.