Improving Dialog Systems for Negotiation with Personality Modeling
- URL: http://arxiv.org/abs/2010.09954v2
- Date: Mon, 21 Jun 2021 06:28:57 GMT
- Title: Improving Dialog Systems for Negotiation with Personality Modeling
- Authors: Runzhe Yang, Jingxiao Chen, Karthik Narasimhan
- Abstract summary: We introduce a probabilistic formulation to encapsulate the opponent's personality type during both learning and inference.
We test our approach on the CraigslistBargain dataset and show that our method using ToM inference achieves a 20% higher dialog agreement rate.
- Score: 30.78850714931678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the ability to model and infer personality types of
opponents, predict their responses, and use this information to adapt a dialog
agent's high-level strategy in negotiation tasks. Inspired by the idea of
incorporating a theory of mind (ToM) into machines, we introduce a
probabilistic formulation to encapsulate the opponent's personality type during
both learning and inference. We test our approach on the CraigslistBargain
dataset and show that our method using ToM inference achieves a 20% higher
dialog agreement rate compared to baselines on a mixed population of opponents.
We also find that our model displays diverse negotiation behavior with
different types of opponents.
Related papers
- Be Selfish, But Wisely: Investigating the Impact of Agent Personality in
Mixed-Motive Human-Agent Interactions [24.266490660606497]
We find that self-play RL fails to learn the value of compromise in a negotiation.
We modify the training procedure in two novel ways to design agents with diverse personalities and analyze their performance with human partners.
We find that although both techniques show promise, a selfish agent, which maximizes its own performance while also avoiding walkaways, performs superior to other variants by implicitly learning to generate value for both itself and the negotiation partner.
arXiv Detail & Related papers (2023-10-22T20:31:35Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDial is a novel conversational framework that can generate situated free-form responses with theory-of-mind modeling.
We introduce an explicit mind module that can track the speaker's belief and the speaker's prediction of the listener's belief.
Our framework is applied to both prompting and fine-tuning-based models, and is evaluated across scenarios involving both common ground alignment and negotiation.
arXiv Detail & Related papers (2023-06-27T07:24:32Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - A Probabilistic Model Of Interaction Dynamics for Dyadic Face-to-Face
Settings [1.9544213396776275]
We develop a probabilistic model to capture the interaction dynamics between pairs of participants in a face-to-face setting.
This interaction encoding is then used to influence the generation when predicting one agent's future dynamics.
We show that our model successfully delineates between the modes, based on their interacting dynamics.
arXiv Detail & Related papers (2022-07-10T23:31:27Z) - Opponent Modeling in Negotiation Dialogues by Related Data Adaptation [20.505272677769355]
We propose a ranker for identifying priorities from negotiation dialogues.
The model takes in a partial dialogue as input and predicts the priority order of the opponent.
We show the utility of our proposed approach through extensive experiments based on two dialogue datasets.
arXiv Detail & Related papers (2022-04-30T21:11:41Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
We introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues.
We then compare a structured utterance-based approach of using pre-trained Transformer models for contradiction detection with the typical unstructured approach.
arXiv Detail & Related papers (2020-12-24T18:47:49Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - Learnable Strategies for Bilateral Agent Negotiation over Multiple
Issues [6.12762193927784]
We present a novel bilateral negotiation model that allows a self-interested agent to learn how to negotiate over multiple issues.
The model relies upon interpretable strategy templates representing the tactics the agent should employ during the negotiation.
It learns template parameters to maximize the average utility received over multiple negotiations, thus resulting in optimal bid acceptance and generation.
arXiv Detail & Related papers (2020-09-17T13:52:18Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.