Speaker Separation Using Speaker Inventories and Estimated Speech
- URL: http://arxiv.org/abs/2010.10556v1
- Date: Tue, 20 Oct 2020 18:15:45 GMT
- Title: Speaker Separation Using Speaker Inventories and Estimated Speech
- Authors: Peidong Wang, Zhuo Chen, DeLiang Wang, Jinyu Li, Yifan Gong
- Abstract summary: We propose speaker separation using speaker inventories (SSUSI) and speaker separation using estimated speech (SSUES)
By combining the advantages of permutation invariant training (PIT) and speech extraction, SSUSI significantly outperforms conventional approaches.
- Score: 78.57067876891253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose speaker separation using speaker inventories and estimated speech
(SSUSIES), a framework leveraging speaker profiles and estimated speech for
speaker separation. SSUSIES contains two methods, speaker separation using
speaker inventories (SSUSI) and speaker separation using estimated speech
(SSUES). SSUSI performs speaker separation with the help of speaker inventory.
By combining the advantages of permutation invariant training (PIT) and speech
extraction, SSUSI significantly outperforms conventional approaches. SSUES is a
widely applicable technique that can substantially improve speaker separation
performance using the output of first-pass separation. We evaluate the models
on both speaker separation and speech recognition metrics.
Related papers
- Improving Speaker Diarization using Semantic Information: Joint Pairwise
Constraints Propagation [53.01238689626378]
We propose a novel approach to leverage semantic information in speaker diarization systems.
We introduce spoken language understanding modules to extract speaker-related semantic information.
We present a novel framework to integrate these constraints into the speaker diarization pipeline.
arXiv Detail & Related papers (2023-09-19T09:13:30Z) - Exploring Speaker-Related Information in Spoken Language Understanding
for Better Speaker Diarization [7.673971221635779]
We propose methods to extract speaker-related information from semantic content in multi-party meetings.
Experiments on both AISHELL-4 and AliMeeting datasets show that our method achieves consistent improvements over acoustic-only speaker diarization systems.
arXiv Detail & Related papers (2023-05-22T11:14:19Z) - In search of strong embedding extractors for speaker diarisation [49.7017388682077]
We tackle two key problems when adopting EEs for speaker diarisation.
First, the evaluation is not straightforward because the features required for better performance differ between speaker verification and diarisation.
We show that better performance on widely adopted speaker verification evaluation protocols does not lead to better diarisation performance.
We propose two data augmentation techniques to alleviate the second problem, making embedding extractors aware of overlapped speech or speaker change input.
arXiv Detail & Related papers (2022-10-26T13:00:29Z) - Transcribe-to-Diarize: Neural Speaker Diarization for Unlimited Number
of Speakers using End-to-End Speaker-Attributed ASR [44.181755224118696]
Transcribe-to-Diarize is a new approach for neural speaker diarization that uses an end-to-end (E2E) speaker-attributed automatic speech recognition (SA-ASR)
The proposed method achieves significantly better diarization error rate than various existing speaker diarization methods when the number of speakers is unknown.
arXiv Detail & Related papers (2021-10-07T02:48:49Z) - Guided Training: A Simple Method for Single-channel Speaker Separation [40.34570426165019]
We propose a strategy to train a long short-term memory (LSTM) model to solve the permutation problem in speaker separation.
Due to the powerful capability on sequence modeling, LSTM can use its memory cells to track and separate target speech from interfering speech.
arXiv Detail & Related papers (2021-03-26T08:46:50Z) - Investigating on Incorporating Pretrained and Learnable Speaker
Representations for Multi-Speaker Multi-Style Text-to-Speech [54.75722224061665]
In this work, we investigate different speaker representations and proposed to integrate pretrained and learnable speaker representations.
The FastSpeech 2 model combined with both pretrained and learnable speaker representations shows great generalization ability on few-shot speakers.
arXiv Detail & Related papers (2021-03-06T10:14:33Z) - Content-Aware Speaker Embeddings for Speaker Diarisation [3.6398652091809987]
The content-aware speaker embeddings (CASE) approach is proposed.
Case factorises automatic speech recognition (ASR) from speaker recognition to focus on modelling speaker characteristics.
Case achieved a 17.8% relative speaker error rate reduction over conventional methods.
arXiv Detail & Related papers (2021-02-12T12:02:03Z) - Joint Speaker Counting, Speech Recognition, and Speaker Identification
for Overlapped Speech of Any Number of Speakers [38.3469744871394]
We propose an end-to-end speaker-attributed automatic speech recognition model.
It unifies speaker counting, speech recognition, and speaker identification on overlapped speech.
arXiv Detail & Related papers (2020-06-19T02:05:18Z) - Speaker Diarization with Lexical Information [59.983797884955]
This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition.
We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embeddings into a speaker clustering process to improve the overall diarization accuracy.
arXiv Detail & Related papers (2020-04-13T17:16:56Z) - Improving speaker discrimination of target speech extraction with
time-domain SpeakerBeam [100.95498268200777]
SpeakerBeam exploits an adaptation utterance of the target speaker to extract his/her voice characteristics.
SpeakerBeam sometimes fails when speakers have similar voice characteristics, such as in same-gender mixtures.
We show experimentally that these strategies greatly improve speech extraction performance, especially for same-gender mixtures.
arXiv Detail & Related papers (2020-01-23T05:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.