Conditional Density Estimation via Weighted Logistic Regressions
- URL: http://arxiv.org/abs/2010.10896v1
- Date: Wed, 21 Oct 2020 11:08:25 GMT
- Title: Conditional Density Estimation via Weighted Logistic Regressions
- Authors: Yiping Guo and Howard D. Bondell
- Abstract summary: We propose a novel parametric conditional density estimation method by showing the connection between the general density and the likelihood function of inhomogeneous process models.
The maximum likelihood estimates can be obtained via weighted logistic regressions, and the computation can be significantly relaxed by combining a block-wise alternating scheme and local case-control sampling.
- Score: 0.30458514384586394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to the conditional mean as a simple point estimator, the conditional
density function is more informative to describe the distributions with
multi-modality, asymmetry or heteroskedasticity. In this paper, we propose a
novel parametric conditional density estimation method by showing the
connection between the general density and the likelihood function of
inhomogeneous Poisson process models. The maximum likelihood estimates can be
obtained via weighted logistic regressions, and the computation can be
significantly relaxed by combining a block-wise alternating maximization scheme
and local case-control sampling. We also provide simulation studies for
illustration.
Related papers
- Diffusion Density Estimators [0.0]
We introduce a new, highly parallelizable method that computes log densities without the need to solve a flow.
Our approach is based on estimating a path integral by Monte Carlo, in a manner identical to the simulation-free training of diffusion models.
arXiv Detail & Related papers (2024-10-09T15:21:53Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation [11.874729463016227]
We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise.
The training process utilizes dataset consisting of input-output pairs without requiring prior knowledge about the noise and the function.
Our model, once trained, can generate samples from any conditional probability density functions whose high probability regions are covered by the training set.
arXiv Detail & Related papers (2024-03-31T00:09:58Z) - Investigating the Adversarial Robustness of Density Estimation Using the
Probability Flow ODE [4.7818621660181595]
We introduce and evaluate six gradient-based log-likelihood attacks, including a novel reverse integration attack.
Our experimental evaluations on CIFAR-10 show that density estimation using the PF ODE is robust against high-complexity, high-likelihood attacks, and that in some cases adversarial samples are semantically meaningful, as expected from a robust estimator.
arXiv Detail & Related papers (2023-10-10T23:58:53Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
Estimation [4.014524824655106]
MESSY estimation is a Maximum-Entropy based Gradient and Symbolic densitY estimation method.
We construct a gradient-based drift-diffusion process that connects samples of the unknown distribution function to a guess symbolic expression.
We find that the addition of a symbolic search for basis functions improves the accuracy of the estimation at a reasonable additional computational cost.
arXiv Detail & Related papers (2023-06-07T03:28:47Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.