Classifying Syntactic Errors in Learner Language
- URL: http://arxiv.org/abs/2010.11032v2
- Date: Tue, 27 Oct 2020 14:58:14 GMT
- Title: Classifying Syntactic Errors in Learner Language
- Authors: Leshem Choshen, Dmitry Nikolaev, Yevgeni Berzak, Omri Abend
- Abstract summary: We present a method for classifying syntactic errors in learner language, namely errors whose correction alters the morphosyntactic structure of a sentence.
The methodology builds on the established Universal Dependencies syntactic representation scheme, and provides complementary information to other error-classification systems.
- Score: 32.93997096837712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for classifying syntactic errors in learner language,
namely errors whose correction alters the morphosyntactic structure of a
sentence.
The methodology builds on the established Universal Dependencies syntactic
representation scheme, and provides complementary information to other
error-classification systems.
Unlike existing error classification methods, our method is applicable across
languages, which we showcase by producing a detailed picture of syntactic
errors in learner English and learner Russian. We further demonstrate the
utility of the methodology for analyzing the outputs of leading Grammatical
Error Correction (GEC) systems.
Related papers
- DISCERN: Decoding Systematic Errors in Natural Language for Text Classifiers [18.279429202248632]
We introduce DISCERN, a framework for interpreting systematic biases in text classifiers using language explanations.
DISCERN iteratively generates precise natural language descriptions of systematic errors by employing an interactive loop between two large language models.
We show that users can interpret systematic biases more effectively (by over 25% relative) and efficiently when described through language explanations as opposed to cluster exemplars.
arXiv Detail & Related papers (2024-10-29T17:04:55Z) - Interactively Diagnosing Errors in a Semantic Parser [7.136205674624813]
We present work in progress on an interactive error diagnosis system for the CNLU.
We show how the first two stages of the INLD pipeline can be cast as a model-based diagnosis problem.
We demonstrate our system's ability to diagnose semantic errors on synthetic examples.
arXiv Detail & Related papers (2024-07-08T21:16:09Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
Our model iteratively selects or synthesizes a data-point according to one of a range of information-theoretic policies.
We find that the information-theoretic policies that our model uses to select items to query the informant achieve sample efficiency comparable to, or greater than, fully supervised approaches.
arXiv Detail & Related papers (2024-05-08T00:18:56Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - Enhancing Grammatical Error Correction Systems with Explanations [45.69642286275681]
Grammatical error correction systems improve written communication by detecting and correcting language mistakes.
We introduce EXPECT, a dataset annotated with evidence words and grammatical error types.
Human evaluation verifies our explainable GEC system's explanations can assist second-language learners in determining whether to accept a correction suggestion.
arXiv Detail & Related papers (2023-05-25T03:00:49Z) - Improving Pre-trained Language Models with Syntactic Dependency
Prediction Task for Chinese Semantic Error Recognition [52.55136323341319]
Existing Chinese text error detection mainly focuses on spelling and simple grammatical errors.
Chinese semantic errors are understudied and more complex that humans cannot easily recognize.
arXiv Detail & Related papers (2022-04-15T13:55:32Z) - A Syntax-Guided Grammatical Error Correction Model with Dependency Tree
Correction [83.14159143179269]
Grammatical Error Correction (GEC) is a task of detecting and correcting grammatical errors in sentences.
We propose a syntax-guided GEC model (SG-GEC) which adopts the graph attention mechanism to utilize the syntactic knowledge of dependency trees.
We evaluate our model on public benchmarks of GEC task and it achieves competitive results.
arXiv Detail & Related papers (2021-11-05T07:07:48Z) - Grammatical Error Generation Based on Translated Fragments [0.0]
We perform neural machine translation of sentence fragments in order to create large amounts of training data for English grammatical error correction.
Our method aims at simulating mistakes made by second language learners, and produces a wider range of non-native style language.
arXiv Detail & Related papers (2021-04-20T12:43:40Z) - On the Robustness of Language Encoders against Grammatical Errors [66.05648604987479]
We collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data.
Results confirm that the performance of all tested models is affected but the degree of impact varies.
arXiv Detail & Related papers (2020-05-12T11:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.