Logistic Q-Learning
- URL: http://arxiv.org/abs/2010.11151v2
- Date: Thu, 25 Feb 2021 21:34:03 GMT
- Title: Logistic Q-Learning
- Authors: Joan Bas-Serrano, Sebastian Curi, Andreas Krause, Gergely Neu
- Abstract summary: We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
- Score: 87.00813469969167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new reinforcement learning algorithm derived from a regularized
linear-programming formulation of optimal control in MDPs. The method is
closely related to the classic Relative Entropy Policy Search (REPS) algorithm
of Peters et al. (2010), with the key difference that our method introduces a
Q-function that enables efficient exact model-free implementation. The main
feature of our algorithm (called QREPS) is a convex loss function for policy
evaluation that serves as a theoretically sound alternative to the widely used
squared Bellman error. We provide a practical saddle-point optimization method
for minimizing this loss function and provide an error-propagation analysis
that relates the quality of the individual updates to the performance of the
output policy. Finally, we demonstrate the effectiveness of our method on a
range of benchmark problems.
Related papers
- Regularized Q-Learning with Linear Function Approximation [2.765106384328772]
We consider a bi-level optimization formulation of regularized Q-learning with linear functional approximation.
We show that, under certain assumptions, the proposed algorithm converges to a stationary point in the presence of Markovian noise.
arXiv Detail & Related papers (2024-01-26T20:45:40Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Proximal Point Imitation Learning [48.50107891696562]
We develop new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning.
We leverage classical tools from optimization, in particular, the proximal-point method (PPM) and dual smoothing.
We achieve convincing empirical performance for both linear and neural network function approximation.
arXiv Detail & Related papers (2022-09-22T12:40:21Z) - Bellman Residual Orthogonalization for Offline Reinforcement Learning [53.17258888552998]
We introduce a new reinforcement learning principle that approximates the Bellman equations by enforcing their validity only along a test function space.
We exploit this principle to derive confidence intervals for off-policy evaluation, as well as to optimize over policies within a prescribed policy class.
arXiv Detail & Related papers (2022-03-24T01:04:17Z) - Stochastic convex optimization for provably efficient apprenticeship
learning [1.0609815608017066]
We consider large-scale Markov decision processes (MDPs) with an unknown cost function.
We employ convex optimization tools to address the problem of imitation learning, which consists of learning a policy from a finite set of expert demonstrations.
arXiv Detail & Related papers (2021-12-31T19:47:57Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Recurrent Model Predictive Control [19.047059454849897]
We propose an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems.
Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs.
arXiv Detail & Related papers (2021-02-23T15:01:36Z) - Adaptive Approximate Policy Iteration [22.915651391812187]
We present a learning scheme which enjoys a $tildeO(T2/3)$ regret bound for undiscounted, continuing learning in uniformly ergodic MDPs.
This is an improvement over the best existing bound of $tildeO(T3/4)$ for the average-reward case with function approximation.
arXiv Detail & Related papers (2020-02-08T02:27:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.