Incorporating Stylistic Lexical Preferences in Generative Language
Models
- URL: http://arxiv.org/abs/2010.11553v1
- Date: Thu, 22 Oct 2020 09:24:05 GMT
- Title: Incorporating Stylistic Lexical Preferences in Generative Language
Models
- Authors: Hrituraj Singh, Gaurav Verma, Balaji Vasan Srinivasan
- Abstract summary: We present an approach to induce certain target-author attributes by incorporating continuous multi-dimensional lexical preferences of an author into generative language models.
Our experiments demonstrate that the proposed approach can generate text that distinctively aligns with a given target author's lexical style.
- Score: 10.62343151429147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent advances in language modeling have resulted in powerful
generation models, their generation style remains implicitly dependent on the
training data and can not emulate a specific target style. Leveraging the
generative capabilities of a transformer-based language models, we present an
approach to induce certain target-author attributes by incorporating continuous
multi-dimensional lexical preferences of an author into generative language
models. We introduce rewarding strategies in a reinforcement learning framework
that encourages the use of words across multiple categorical dimensions, to
varying extents. Our experiments demonstrate that the proposed approach can
generate text that distinctively aligns with a given target author's lexical
style. We conduct quantitative and qualitative comparisons with competitive and
relevant baselines to illustrate the benefits of the proposed approach.
Related papers
- Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)
Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)
We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Personalized Text Generation with Fine-Grained Linguistic Control [9.668216418094316]
We focus on controlling fine-grained attributes spanning multiple linguistic dimensions.
We introduce a novel benchmark to train generative models and evaluate their ability to generate personalized text.
arXiv Detail & Related papers (2024-02-07T14:41:08Z) - Learning to Generate Text in Arbitrary Writing Styles [6.7308816341849695]
It is desirable for language models to produce text in an author-specific style on the basis of a potentially small writing sample.
We propose to guide a language model to generate text in a target style using contrastively-trained representations that capture stylometric features.
arXiv Detail & Related papers (2023-12-28T18:58:52Z) - PatternGPT :A Pattern-Driven Framework for Large Language Model Text
Generation [1.7259824817932292]
This paper proposes PatternGPT, a pattern-driven text generation framework for Large Language Models.
The framework utilizes the extraction capability of Large Language Models to generate rich and diversified structured and formalized patterns.
external knowledge such as judgment criteria and optimization algorithms are used to search for high-quality patterns.
arXiv Detail & Related papers (2023-07-02T04:32:41Z) - Multilingual Conceptual Coverage in Text-to-Image Models [98.80343331645626]
"Conceptual Coverage Across Languages" (CoCo-CroLa) is a technique for benchmarking the degree to which any generative text-to-image system provides multilingual parity to its training language in terms of tangible nouns.
For each model we can assess "conceptual coverage" of a given target language relative to a source language by comparing the population of images generated for a series of tangible nouns in the source language to the population of images generated for each noun under translation in the target language.
arXiv Detail & Related papers (2023-06-02T17:59:09Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
We apply a statistical tool, model criticism in latent space, to evaluate the high-level structure of generated text.
We perform experiments on three representative aspects of high-level discourse -- coherence, coreference, and topicality.
We find that transformer-based language models are able to capture topical structures but have a harder time maintaining structural coherence or modeling coreference.
arXiv Detail & Related papers (2022-10-16T04:35:58Z) - Attribute Alignment: Controlling Text Generation from Pre-trained
Language Models [46.19190007510232]
We propose a simple and flexible method for controlling text generation by aligning disentangled attribute representations.
In contrast to recent efforts on training a discriminator to perturb the token level distribution for an attribute, we use the same data to learn an alignment function to guide the pre-trained, non-controlled language model to generate texts with the target attribute without changing the original language model parameters.
arXiv Detail & Related papers (2021-03-20T01:51:32Z) - GTAE: Graph-Transformer based Auto-Encoders for Linguistic-Constrained
Text Style Transfer [119.70961704127157]
Non-parallel text style transfer has attracted increasing research interests in recent years.
Current approaches still lack the ability to preserve the content and even logic of original sentences.
We propose a method called Graph Transformer based Auto-GTAE, which models a sentence as a linguistic graph and performs feature extraction and style transfer at the graph level.
arXiv Detail & Related papers (2021-02-01T11:08:45Z) - StyleDGPT: Stylized Response Generation with Pre-trained Language Models [39.526613595499356]
We introduce a KL loss and a style classifier to steer response generation towards the target style in both a word-level and a sentence-level.
Our model can significantly outperform state-of-the-art methods in terms of both style consistency and contextual coherence.
arXiv Detail & Related papers (2020-10-06T09:29:50Z) - Improving Adversarial Text Generation by Modeling the Distant Future [155.83051741029732]
We consider a text planning scheme and present a model-based imitation-learning approach to alleviate the aforementioned issues.
We propose a novel guider network to focus on the generative process over a longer horizon, which can assist next-word prediction and provide intermediate rewards for generator optimization.
arXiv Detail & Related papers (2020-05-04T05:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.