Analysis of three dimensional potential problems in non-homogeneous
media with physics-informed deep collocation method using material transfer
learning and sensitivity analysis
- URL: http://arxiv.org/abs/2010.12060v2
- Date: Wed, 11 May 2022 09:09:28 GMT
- Title: Analysis of three dimensional potential problems in non-homogeneous
media with physics-informed deep collocation method using material transfer
learning and sensitivity analysis
- Authors: Hongwei Guo, Xiaoying Zhuang, Pengwan Chen, Naif Alajlan and Timon
Rabczuk
- Abstract summary: This work utilizes a physics informed neural network with material transfer learning reducing the solution of the nonhomogeneous partial differential equations to an optimization problem.
A material transfer learning technique is utilised for nonhomogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method.
- Score: 1.5749416770494704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a deep collocation method for three dimensional
potential problems in nonhomogeneous media. This approach utilizes a physics
informed neural network with material transfer learning reducing the solution
of the nonhomogeneous partial differential equations to an optimization
problem. We tested different cofigurations of the physics informed neural
network including smooth activation functions, sampling methods for collocation
points generation and combined optimizers. A material transfer learning
technique is utilised for nonhomogeneous media with different material
gradations and parameters, which enhance the generality and robustness of the
proposed method. In order to identify the most influential parameters of the
network configuration, we carried out a global sensitivity analysis. Finally,
we provide a convergence proof of our DCM. The approach is validated through
several benchmark problems, also testing different material variations.
Related papers
- Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Neural network analysis of neutron and X-ray reflectivity data:
Incorporating prior knowledge for tackling the phase problem [141.5628276096321]
We present an approach that utilizes prior knowledge to regularize the training process over larger parameter spaces.
We demonstrate the effectiveness of our method in various scenarios, including multilayer structures with box model parameterization.
In contrast to previous methods, our approach scales favorably when increasing the complexity of the inverse problem.
arXiv Detail & Related papers (2023-06-28T11:15:53Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
Quantitative Magnetic Resonance Imaging (qMRI) enables the reproducible measurement of biophysical parameters in tissue.
The challenge lies in solving a nonlinear, ill-posed inverse problem to obtain desired tissue parameter maps from acquired raw data.
We propose PINQI, a novel qMRI reconstruction method that integrates the knowledge about the signal, acquisition model, and learned regularization into a single end-to-end trainable neural network.
arXiv Detail & Related papers (2023-06-19T15:37:53Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Physical Gradients for Deep Learning [101.36788327318669]
We find that state-of-the-art training techniques are not well-suited to many problems that involve physical processes.
We propose a novel hybrid training approach that combines higher-order optimization methods with machine learning techniques.
arXiv Detail & Related papers (2021-09-30T12:14:31Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
We propose a solution to simulate hyper-elastic materials using a data-driven approach.
A neural network is trained to learn the non-linear relationship between boundary conditions and the resulting displacement field.
The results show that our network architecture trained with a limited amount of data can predict the displacement field in less than a millisecond.
arXiv Detail & Related papers (2021-09-17T12:15:47Z) - Meshless physics-informed deep learning method for three-dimensional
solid mechanics [0.0]
Deep learning and the collocation method are merged and used to solve partial differential equations describing structures' deformation.
We consider different types of materials: linear elasticity, hyperelasticity (neo-Hookean) with large deformation, and von Mises plasticity with isotropic and kinematic hardening.
arXiv Detail & Related papers (2020-12-02T21:40:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.