Transferable Graph Optimizers for ML Compilers
- URL: http://arxiv.org/abs/2010.12438v2
- Date: Sat, 20 Feb 2021 00:35:53 GMT
- Title: Transferable Graph Optimizers for ML Compilers
- Authors: Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma,
Qiumin Xu, Hanxiao Liu, Phitchaya Mangpo Phothilimthana, Shen Wang, Anna
Goldie, Azalia Mirhoseini, and James Laudon
- Abstract summary: We propose an end-to-end, transferable deep reinforcement learning method for computational graph optimization (GO)
GO generates decisions on the entire graph rather than on each individual node autoregressively, drastically speeding up the search compared to prior methods.
GO achieves 21% improvement over human experts and 18% improvement over the prior state of the art with 15x faster convergence.
- Score: 18.353830282858834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most compilers for machine learning (ML) frameworks need to solve many
correlated optimization problems to generate efficient machine code. Current ML
compilers rely on heuristics based algorithms to solve these optimization
problems one at a time. However, this approach is not only hard to maintain but
often leads to sub-optimal solutions especially for newer model architectures.
Existing learning based approaches in the literature are sample inefficient,
tackle a single optimization problem, and do not generalize to unseen graphs
making them infeasible to be deployed in practice. To address these
limitations, we propose an end-to-end, transferable deep reinforcement learning
method for computational graph optimization (GO), based on a scalable
sequential attention mechanism over an inductive graph neural network. GO
generates decisions on the entire graph rather than on each individual node
autoregressively, drastically speeding up the search compared to prior methods.
Moreover, we propose recurrent attention layers to jointly optimize dependent
graph optimization tasks and demonstrate 33%-60% speedup on three graph
optimization tasks compared to TensorFlow default optimization. On a diverse
set of representative graphs consisting of up to 80,000 nodes, including
Inception-v3, Transformer-XL, and WaveNet, GO achieves on average 21%
improvement over human experts and 18% improvement over the prior state of the
art with 15x faster convergence, on a device placement task evaluated in real
systems.
Related papers
- ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models [14.310720048047136]
ALPS is an optimization-based framework that tackles the pruning problem using the operator splitting technique and a preconditioned gradient conjugate-based post-processing step.
Our approach incorporates novel techniques to accelerate and theoretically guarantee convergence while leveraging vectorization and GPU parallelism for efficiency.
On the OPT-30B model with 70% sparsity, ALPS achieves a 13% reduction in test perplexity on the WikiText dataset and a 19% improvement in zero-shot benchmark performance compared to existing methods.
arXiv Detail & Related papers (2024-06-12T02:57:41Z) - RESPECT: Reinforcement Learning based Edge Scheduling on Pipelined Coral
Edge TPUs [12.952987240366781]
This work presents a reinforcement learning (RL) based scheduling framework, which learns the behaviors of optimal optimization algorithms.
RL generates near-optimal scheduling results with short solving runtime overhead.
Our framework has demonstrated up to $sim2.5times$ real-world on-chip runtime inference speedups over the commercial compiler.
arXiv Detail & Related papers (2023-04-10T17:22:12Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Learning to Optimize Quasi-Newton Methods [22.504971951262004]
This paper introduces a novel machine learning called LODO, which tries to online meta-learn the best preconditioner during optimization.
Unlike other L2O methods, LODO does not require any meta-training on a training task distribution.
We show that our gradient approximates the inverse Hessian in noisy loss landscapes and is capable of representing a wide range of inverse Hessians.
arXiv Detail & Related papers (2022-10-11T03:47:14Z) - Alternately Optimized Graph Neural Networks [33.98939289745346]
We propose a new optimization framework for semi-supervised learning on graphs.
The proposed framework can be conveniently solved by the alternating optimization algorithms, resulting in significantly improved efficiency.
arXiv Detail & Related papers (2022-06-08T01:50:08Z) - Learning to Solve Combinatorial Graph Partitioning Problems via
Efficient Exploration [72.15369769265398]
Experimentally, ECORD achieves a new SOTA for RL algorithms on the Maximum Cut problem.
Compared to the nearest competitor, ECORD reduces the optimality gap by up to 73%.
arXiv Detail & Related papers (2022-05-27T17:13:10Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Gumbel-softmax-based Optimization: A Simple General Framework for
Optimization Problems on Graphs [5.486093983007419]
We propose a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks.
High-quality solutions can be obtained with much less time consuming compared to traditional approaches.
arXiv Detail & Related papers (2020-04-14T14:11:00Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.