CLOUD: Contrastive Learning of Unsupervised Dynamics
- URL: http://arxiv.org/abs/2010.12488v1
- Date: Fri, 23 Oct 2020 15:42:57 GMT
- Title: CLOUD: Contrastive Learning of Unsupervised Dynamics
- Authors: Jianren Wang, Yujie Lu, Hang Zhao
- Abstract summary: We propose to learn forward and inverse dynamics in a fully unsupervised manner via contrastive estimation.
We demonstrate the efficacy of our approach across a variety of tasks including goal-directed planning and imitation from observations.
- Score: 19.091886595825947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing agents that can perform complex control tasks from high
dimensional observations such as pixels is challenging due to difficulties in
learning dynamics efficiently. In this work, we propose to learn forward and
inverse dynamics in a fully unsupervised manner via contrastive estimation.
Specifically, we train a forward dynamics model and an inverse dynamics model
in the feature space of states and actions with data collected from random
exploration. Unlike most existing deterministic models, our energy-based model
takes into account the stochastic nature of agent-environment interactions. We
demonstrate the efficacy of our approach across a variety of tasks including
goal-directed planning and imitation from observations. Project videos and code
are at https://jianrenw.github.io/cloud/.
Related papers
- SOLD: Reinforcement Learning with Slot Object-Centric Latent Dynamics [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamics is a novel algorithm that learns object-centric dynamics models from pixel inputs.
We demonstrate that the structured latent space not only improves model interpretability but also provides a valuable input space for behavior models to reason over.
Our results show that SOLD outperforms DreamerV3, a state-of-the-art model-based RL algorithm, across a range of benchmark robotic environments.
arXiv Detail & Related papers (2024-10-11T14:03:31Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Learning Reactive and Predictive Differentiable Controllers for
Switching Linear Dynamical Models [7.653542219337937]
We present a framework for learning composite dynamical behaviors from expert demonstrations.
We learn a switching linear dynamical model with contacts encoded in switching conditions as a close approximation of our system dynamics.
We then use discrete-time LQR as the differentiable policy class for data-efficient learning of control to develop a control strategy.
arXiv Detail & Related papers (2021-03-26T04:40:24Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.