Byzantine Resilient Distributed Multi-Task Learning
- URL: http://arxiv.org/abs/2010.13032v2
- Date: Thu, 7 Jan 2021 19:10:47 GMT
- Title: Byzantine Resilient Distributed Multi-Task Learning
- Authors: Jiani Li, Waseem Abbas, Xenofon Koutsoukos
- Abstract summary: We show that distributed algorithms for learning relatedness among tasks are not resilient in the presence of Byzantine agents.
We propose an approach for Byzantine resilient distributed multi-task learning.
- Score: 6.850757447639822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed multi-task learning provides significant advantages in
multi-agent networks with heterogeneous data sources where agents aim to learn
distinct but correlated models simultaneously.However, distributed algorithms
for learning relatedness among tasks are not resilient in the presence of
Byzantine agents. In this paper, we present an approach for Byzantine resilient
distributed multi-task learning. We propose an efficient online weight
assignment rule by measuring the accumulated loss using an agent's data and its
neighbors' models. A small accumulated loss indicates a large similarity
between the two tasks. In order to ensure the Byzantine resilience of the
aggregation at a normal agent, we introduce a step for filtering out larger
losses. We analyze the approach for convex models and show that normal agents
converge resiliently towards the global minimum.Further, aggregation with the
proposed weight assignment rule always results in an improved expected regret
than the non-cooperative case. Finally, we demonstrate the approach using three
case studies, including regression and classification problems, and show that
our method exhibits good empirical performance for non-convex models, such as
convolutional neural networks.
Related papers
- Byzantine-Robust and Communication-Efficient Distributed Learning via Compressed Momentum Filtering [17.446431849022346]
Distributed learning has become the standard approach for training large-scale machine learning models across private data silos.
It faces critical challenges related to robustness and communication preservation.
We propose a novel Byzantine-robust and communication-efficient distributed learning method.
arXiv Detail & Related papers (2024-09-13T08:53:10Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
We propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Federated Learning for Heterogeneous Bandits with Unobserved Contexts [0.0]
We study the problem of federated multi-arm contextual bandits with unknown contexts.
We propose an elimination-based algorithm and prove the regret bound for linearly parametrized reward functions.
arXiv Detail & Related papers (2023-03-29T22:06:24Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.