A Survey on Curriculum Learning
- URL: http://arxiv.org/abs/2010.13166v2
- Date: Thu, 25 Mar 2021 03:56:49 GMT
- Title: A Survey on Curriculum Learning
- Authors: Xin Wang, Yudong Chen and Wenwu Zhu
- Abstract summary: Curriculum learning (CL) is a training strategy that trains a machine learning model from easier data to harder data.
As an easy-to-use plug-in, the CL strategy has demonstrated its power in improving the generalization capacity and convergence rate of various models.
- Score: 48.36129047271622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Curriculum learning (CL) is a training strategy that trains a machine
learning model from easier data to harder data, which imitates the meaningful
learning order in human curricula. As an easy-to-use plug-in, the CL strategy
has demonstrated its power in improving the generalization capacity and
convergence rate of various models in a wide range of scenarios such as
computer vision and natural language processing etc. In this survey article, we
comprehensively review CL from various aspects including motivations,
definitions, theories, and applications. We discuss works on curriculum
learning within a general CL framework, elaborating on how to design a manually
predefined curriculum or an automatic curriculum. In particular, we summarize
existing CL designs based on the general framework of Difficulty
Measurer+Training Scheduler and further categorize the methodologies for
automatic CL into four groups, i.e., Self-paced Learning, Transfer Teacher, RL
Teacher, and Other Automatic CL. We also analyze principles to select different
CL designs that may benefit practical applications. Finally, we present our
insights on the relationships connecting CL and other machine learning concepts
including transfer learning, meta-learning, continual learning and active
learning, etc., then point out challenges in CL as well as potential future
research directions deserving further investigations.
Related papers
- Does the Definition of Difficulty Matter? Scoring Functions and their Role for Curriculum Learning [42.4526628515253]
Curriculum learning (CL) describes a machine learning training strategy in which samples are gradually introduced into the training process based on their difficulty.
We study the robustness and similarity of the most common scoring functions for sample difficulty estimation.
We find that the robustness of scoring functions across random seeds positively correlates with CL performance.
arXiv Detail & Related papers (2024-11-01T18:55:31Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
Foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV)
However, they can not emulate human-like continuous learning due to catastrophic forgetting.
Various continual learning (CL)-based methodologies have been developed to refine LMs, enabling them to adapt to new tasks without forgetting previous knowledge.
arXiv Detail & Related papers (2024-05-28T23:32:46Z) - From MNIST to ImageNet and Back: Benchmarking Continual Curriculum
Learning [9.104068727716294]
Continual learning (CL) is one of the most promising trends in machine learning research.
We introduce two novel CL benchmarks that involve multiple heterogeneous tasks from six image datasets.
We additionally structure our benchmarks so that tasks are presented in increasing and decreasing order of complexity.
arXiv Detail & Related papers (2023-03-16T18:11:19Z) - A Survey on In-context Learning [77.78614055956365]
In-context learning (ICL) has emerged as a new paradigm for natural language processing (NLP)
We first present a formal definition of ICL and clarify its correlation to related studies.
We then organize and discuss advanced techniques, including training strategies, prompt designing strategies, and related analysis.
arXiv Detail & Related papers (2022-12-31T15:57:09Z) - Beyond Supervised Continual Learning: a Review [69.9674326582747]
Continual Learning (CL) is a flavor of machine learning where the usual assumption of stationary data distribution is relaxed or omitted.
Changes in the data distribution can cause the so-called catastrophic forgetting (CF) effect: an abrupt loss of previous knowledge.
This article reviews literature that study CL in other settings, such as learning with reduced supervision, fully unsupervised learning, and reinforcement learning.
arXiv Detail & Related papers (2022-08-30T14:44:41Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL)
In this paper, we propose a unified automatic curriculum learning framework to create multi-objective but coherent curricula.
In addition to existing hand-designed curricula paradigms, we further design a flexible memory mechanism to learn an abstract curriculum.
arXiv Detail & Related papers (2021-10-06T19:30:25Z) - Curriculum Learning: A Survey [65.31516318260759]
Curriculum learning strategies have been successfully employed in all areas of machine learning.
We construct a taxonomy of curriculum learning approaches by hand, considering various classification criteria.
We build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm.
arXiv Detail & Related papers (2021-01-25T20:08:32Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback.
We present a framework for curriculum learning (CL) in RL, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals.
arXiv Detail & Related papers (2020-03-10T20:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.