Self-paced Data Augmentation for Training Neural Networks
- URL: http://arxiv.org/abs/2010.15434v1
- Date: Thu, 29 Oct 2020 09:13:18 GMT
- Title: Self-paced Data Augmentation for Training Neural Networks
- Authors: Tomoumi Takase, Ryo Karakida, Hideki Asoh
- Abstract summary: We propose a self-paced augmentation to automatically select suitable samples for data augmentation when training a neural network.
The proposed method mitigates the deterioration of generalization performance caused by ineffective data augmentation.
Experimental results demonstrate that the proposed SPA can improve the generalization performance, particularly when the number of training samples is small.
- Score: 11.554821454921536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation is widely used for machine learning; however, an effective
method to apply data augmentation has not been established even though it
includes several factors that should be tuned carefully. One such factor is
sample suitability, which involves selecting samples that are suitable for data
augmentation. A typical method that applies data augmentation to all training
samples disregards sample suitability, which may reduce classifier performance.
To address this problem, we propose the self-paced augmentation (SPA) to
automatically and dynamically select suitable samples for data augmentation
when training a neural network. The proposed method mitigates the deterioration
of generalization performance caused by ineffective data augmentation. We
discuss two reasons the proposed SPA works relative to curriculum learning and
desirable changes to loss function instability. Experimental results
demonstrate that the proposed SPA can improve the generalization performance,
particularly when the number of training samples is small. In addition, the
proposed SPA outperforms the state-of-the-art RandAugment method.
Related papers
- AdaAugment: A Tuning-Free and Adaptive Approach to Enhance Data Augmentation [12.697608744311122]
AdaAugment is a tuning-free Adaptive Augmentation method.
It dynamically adjusts augmentation magnitudes for individual training samples based on real-time feedback from the target network.
It consistently outperforms other state-of-the-art DA methods in effectiveness while maintaining remarkable efficiency.
arXiv Detail & Related papers (2024-05-19T06:54:03Z) - Boosting Model Resilience via Implicit Adversarial Data Augmentation [20.768174896574916]
We propose to augment the deep features of samples by incorporating adversarial and anti-adversarial perturbation distributions.
We then theoretically reveal that our augmentation process approximates the optimization of a surrogate loss function.
We conduct extensive experiments across four common biased learning scenarios.
arXiv Detail & Related papers (2024-04-25T03:22:48Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity.
We propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification.
We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases.
arXiv Detail & Related papers (2023-12-01T11:06:00Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
This study proposes an Implicit Counterfactual Data Augmentation method to remove spurious correlations and make stable predictions.
Experiments have been conducted across various biased learning scenarios covering both image and text datasets.
arXiv Detail & Related papers (2023-04-26T10:36:40Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - ReSmooth: Detecting and Utilizing OOD Samples when Training with Data
Augmentation [57.38418881020046]
Recent DA techniques always meet the need for diversity in augmented training samples.
An augmentation strategy that has a high diversity usually introduces out-of-distribution (OOD) augmented samples.
We propose ReSmooth, a framework that firstly detects OOD samples in augmented samples and then leverages them.
arXiv Detail & Related papers (2022-05-25T09:29:27Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - SelectAugment: Hierarchical Deterministic Sample Selection for Data
Augmentation [72.58308581812149]
We propose an effective approach, dubbed SelectAugment, to select samples to be augmented in a deterministic and online manner.
Specifically, in each batch, we first determine the augmentation ratio, and then decide whether to augment each training sample under this ratio.
In this way, the negative effects of the randomness in selecting samples to augment can be effectively alleviated and the effectiveness of DA is improved.
arXiv Detail & Related papers (2021-12-06T08:38:38Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Reweighting Augmented Samples by Minimizing the Maximal Expected Loss [51.2791895511333]
We construct the maximal expected loss which is the supremum over any reweighted loss on augmented samples.
Inspired by adversarial training, we minimize this maximal expected loss and obtain a simple and interpretable closed-form solution.
The proposed method can generally be applied on top of any data augmentation methods.
arXiv Detail & Related papers (2021-03-16T09:31:04Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.