Multilayer Clustered Graph Learning
- URL: http://arxiv.org/abs/2010.15456v1
- Date: Thu, 29 Oct 2020 09:58:02 GMT
- Title: Multilayer Clustered Graph Learning
- Authors: Mireille El Gheche and Pascal Frossard
- Abstract summary: We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
- Score: 66.94201299553336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilayer graphs are appealing mathematical tools for modeling multiple
types of relationship in the data. In this paper, we aim at analyzing
multilayer graphs by properly combining the information provided by individual
layers, while preserving the specific structure that allows us to eventually
identify communities or clusters that are crucial in the analysis of graph
data. To do so, we learn a clustered representative graph by solving an
optimization problem that involves a data fidelity term to the observed layers,
and a regularization pushing for a sparse and community-aware graph. We use the
contrastive loss as a data fidelity term, in order to properly aggregate the
observed layers into a representative graph. The regularization is based on a
measure of graph sparsification called "effective resistance", coupled with a
penalization of the first few eigenvalues of the representative graph Laplacian
matrix to favor the formation of communities. The proposed optimization problem
is nonconvex but fully differentiable, and thus can be solved via the projected
gradient method. Experiments show that our method leads to a significant
improvement w.r.t. state-of-the-art multilayer graph learning algorithms for
solving clustering problems.
Related papers
- Gradient scarcity with Bilevel Optimization for Graph Learning [0.0]
gradient scarcity occurs when learning graphs by minimizing a loss on a subset of nodes causes edges between unlabelled nodes that are far from labelled ones to receive zero gradients.
We give a precise mathematical characterization of this phenomenon, and prove it also emerges in bilevel optimization.
To alleviate this issue, we study several solutions: we propose to resort to latent graph learning using a Graph-to-Graph model (G2G), graph regularization to impose a prior structure on the graph, or optimizing on a larger graph than the original one with a reduced diameter.
arXiv Detail & Related papers (2023-03-24T12:37:43Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Multi-view Contrastive Graph Clustering [12.463334005083379]
We propose a generic framework to cluster multi-view attributed graph data.
Inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method.
Our simple approach outperforms existing deep learning-based methods.
arXiv Detail & Related papers (2021-10-22T15:22:42Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
We consider the problem of inferring the graph structure from a given set of graph signals.
Traditional graph learning models do not take this distributional uncertainty into account.
arXiv Detail & Related papers (2021-05-12T06:47:34Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
multilayer graph clustering aims at dividing the graph nodes into categories or communities.
We propose a clustering-friendly embedding of the layers of a given multilayer graph.
Experiments show that our method leads to a significant improvement.
arXiv Detail & Related papers (2021-03-30T17:36:40Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.