Information-theoretic Feature Selection via Tensor Decomposition and
Submodularity
- URL: http://arxiv.org/abs/2010.16181v1
- Date: Fri, 30 Oct 2020 10:36:46 GMT
- Title: Information-theoretic Feature Selection via Tensor Decomposition and
Submodularity
- Authors: Magda Amiridi, Nikos Kargas, Nicholas D. Sidiropoulos
- Abstract summary: We introduce a low-rank tensor model of the joint PMF of all variables and indirect targeting as a way of mitigating complexity and maximizing the classification performance for a given number of features.
By indirectly aiming to predict the latent variable of the naive Bayes model instead of the original target variable, it is possible to formulate the feature selection problem as of a monotone submodular function subject to a cardinality constraint.
- Score: 38.05393186002834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature selection by maximizing high-order mutual information between the
selected feature vector and a target variable is the gold standard in terms of
selecting the best subset of relevant features that maximizes the performance
of prediction models. However, such an approach typically requires knowledge of
the multivariate probability distribution of all features and the target, and
involves a challenging combinatorial optimization problem. Recent work has
shown that any joint Probability Mass Function (PMF) can be represented as a
naive Bayes model, via Canonical Polyadic (tensor rank) Decomposition. In this
paper, we introduce a low-rank tensor model of the joint PMF of all variables
and indirect targeting as a way of mitigating complexity and maximizing the
classification performance for a given number of features. Through low-rank
modeling of the joint PMF, it is possible to circumvent the curse of
dimensionality by learning principal components of the joint distribution. By
indirectly aiming to predict the latent variable of the naive Bayes model
instead of the original target variable, it is possible to formulate the
feature selection problem as maximization of a monotone submodular function
subject to a cardinality constraint - which can be tackled using a greedy
algorithm that comes with performance guarantees. Numerical experiments with
several standard datasets suggest that the proposed approach compares favorably
to the state-of-art for this important problem.
Related papers
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - RUMBoost: Gradient Boosted Random Utility Models [0.0]
The RUMBoost model combines the interpretability and behavioural robustness of Random Utility Models (RUMs) with the generalisation and predictive ability of deep learning methods.
We demonstrate the potential of the RUMBoost model compared to various ML and Random Utility benchmark models for revealed preference mode choice data from London.
arXiv Detail & Related papers (2024-01-22T13:54:26Z) - Feature Selection via the Intervened Interpolative Decomposition and its
Application in Diversifying Quantitative Strategies [4.913248451323163]
We propose a probabilistic model for computing an interpolative decomposition (ID) in which each column of the observed matrix has its own priority or importance.
We evaluate the proposed models on real-world datasets, including ten Chinese A-share stocks.
arXiv Detail & Related papers (2022-09-29T03:36:56Z) - Top-$k$ Regularization for Supervised Feature Selection [11.927046591097623]
We introduce a novel, simple yet effective regularization approach, named top-$k$ regularization, to supervised feature selection.
We show that the top-$k$ regularization is effective and stable for supervised feature selection.
arXiv Detail & Related papers (2021-06-04T01:12:47Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
We present a non-parametric class of probabilistic machine learning within discrete choice models (DCMs)
The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs.
The model is tested on two different mode choice applications and compared against different LCCM benchmarks.
arXiv Detail & Related papers (2021-01-28T19:56:42Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.