Semi-supervised Relation Extraction via Incremental Meta Self-Training
- URL: http://arxiv.org/abs/2010.16410v2
- Date: Fri, 10 Sep 2021 06:58:33 GMT
- Title: Semi-supervised Relation Extraction via Incremental Meta Self-Training
- Authors: Xuming Hu, Chenwei Zhang, Fukun Ma, Chenyao Liu, Lijie Wen, Philip S.
Yu
- Abstract summary: Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples.
Existing self-training methods suffer from the gradual drift problem, where noisy pseudo labels on unlabeled data are incorporated during training.
We propose a method called MetaSRE, where a Relation Label Generation Network generates quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective.
- Score: 56.633441255756075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To alleviate human efforts from obtaining large-scale annotations,
Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in
addition to learning from limited samples. Existing self-training methods
suffer from the gradual drift problem, where noisy pseudo labels on unlabeled
data are incorporated during training. To alleviate the noise in pseudo labels,
we propose a method called MetaSRE, where a Relation Label Generation Network
generates quality assessment on pseudo labels by (meta) learning from the
successful and failed attempts on Relation Classification Network as an
additional meta-objective. To reduce the influence of noisy pseudo labels,
MetaSRE adopts a pseudo label selection and exploitation scheme which assesses
pseudo label quality on unlabeled samples and only exploits high-quality pseudo
labels in a self-training fashion to incrementally augment labeled samples for
both robustness and accuracy. Experimental results on two public datasets
demonstrate the effectiveness of the proposed approach.
Related papers
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Active Label Refinement for Robust Training of Imbalanced Medical Image Classification Tasks in the Presence of High Label Noise [10.232537737211098]
We propose a two-phase approach that combines Learning with Noisy Labels (LNL) and active learning.
We demonstrate that our proposed technique is superior to its predecessors at handling class imbalance by not misidentifying clean samples from minority classes as mostly noisy samples.
arXiv Detail & Related papers (2024-07-08T14:16:05Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - Learning from Noisy Labels with Decoupled Meta Label Purifier [33.87292143223425]
Training deep neural networks with noisy labels is challenging since DNN can easily memorize inaccurate labels.
In this paper, we propose a novel multi-stage label purifier named DMLP.
DMLP decouples the label correction process into label-free representation learning and a simple meta label purifier.
arXiv Detail & Related papers (2023-02-14T03:39:30Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels [49.990938653249415]
This research presents a methodology that assigns initial pseudo-labels to unlabeled data which is used as noisy-labeled data, and trains a deep neural network using the noisy-labeled data.
Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-03-08T11:46:02Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.