Feedback exponential stabilization of GHZ states of multi-qubit systems
- URL: http://arxiv.org/abs/2011.00097v1
- Date: Fri, 30 Oct 2020 20:36:29 GMT
- Title: Feedback exponential stabilization of GHZ states of multi-qubit systems
- Authors: Weichao Liang, Nina H. Amini, Paolo Mason
- Abstract summary: We consider the evolution of a multi-qubit system interacting with electromagnetic fields undergoing continuous-time measurements.
By considering multiple z-type (Pauli z matrix on different qubits) and x-type (Pauli x matrix on all qubits) measurements, we provide general conditions on the feedback controller and the control Hamiltonian.
We demonstrate the effectiveness of our methodology for a three-qubit system through numerical simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider stochastic master equations describing the
evolution of a multi-qubit system interacting with electromagnetic fields
undergoing continuous-time measurements. By considering multiple z-type (Pauli
z matrix on different qubits) and x-type (Pauli x matrix on all qubits)
measurements and one control Hamiltonian, we provide general conditions on the
feedback controller and the control Hamiltonian ensuring almost sure
exponential convergence to a predetermined Greenberger-Horne-Zeilinger (GHZ)
state, which is assumed to be a common eigenstate of the measurement operators.
We provide explicit expressions of feedback controllers satisfying such
conditions. We also consider the case of only z-type measurements and multiple
control Hamiltonians, and we discuss asymptotic convergence towards a
predetermined GHZ state. Finally, we demonstrate the effectiveness of our
methodology for a three-qubit system through numerical simulations.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - First-Order Phase Transition of the Schwinger Model with a Quantum Computer [0.0]
We explore the first-order phase transition in the lattice Schwinger model in the presence of a topological $theta$-term.
We show that the electric field density and particle number, observables which reveal the phase structure of the model, can be reliably obtained from the quantum hardware.
arXiv Detail & Related papers (2023-12-20T08:27:49Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Unified Collision Model of Coherent and Measurement-based Quantum
Feedback [0.0]
We introduce a general framework to describe on an equal footing coherent and measurement-based feedback control of quantum mechanical systems.
We apply our framework to prominent tasks in quantum control, ranging from cooling to Hamiltonian control.
arXiv Detail & Related papers (2022-04-01T14:35:38Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Perils of Embedding for Quantum Sampling [0.0]
A common approach is to minor embed the desired Hamiltonian in a native Hamiltonian.
Here, we consider quantum thermal sampling in the transverse-field Ising model.
We simulate systems of much larger sizes and larger transverse-field strengths than would otherwise be possible.
arXiv Detail & Related papers (2021-03-12T01:49:52Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.