Learning Structured Representations of Entity Names using Active
Learning and Weak Supervision
- URL: http://arxiv.org/abs/2011.00105v1
- Date: Fri, 30 Oct 2020 21:01:22 GMT
- Title: Learning Structured Representations of Entity Names using Active
Learning and Weak Supervision
- Authors: Kun Qian, Poornima Chozhiyath Raman, Yunyao Li, Lucian Popa
- Abstract summary: In this paper, we present a novel learning framework that combines active learning and weak supervision to solve this problem.
Our experimental evaluation show that this framework enables the learning of high-quality models from merely a dozen or so labeled examples.
- Score: 19.780301040411008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured representations of entity names are useful for many entity-related
tasks such as entity normalization and variant generation. Learning the
implicit structured representations of entity names without context and
external knowledge is particularly challenging. In this paper, we present a
novel learning framework that combines active learning and weak supervision to
solve this problem. Our experimental evaluation show that this framework
enables the learning of high-quality models from merely a dozen or so labeled
examples.
Related papers
- Retrieval-Enhanced Named Entity Recognition [1.2187048691454239]
RENER is a technique for named entity recognition using autoregressive language models based on In-Context Learning and information retrieval techniques.
Experimental results show that in the CrossNER collection we achieve state-of-the-art performance with the proposed technique.
arXiv Detail & Related papers (2024-10-17T01:12:48Z) - Tuning-less Object Naming with a Foundation Model [0.0]
We implement a real-time object naming system that enables learning a set of named entities never seen.
Our contribution is using the association mechanism known from transformers as attention.
As a result, the system can work in a one-shot manner and correctly name objects named in different contents.
arXiv Detail & Related papers (2023-11-03T09:11:49Z) - Learning to Name Classes for Vision and Language Models [57.0059455405424]
Large scale vision and language models can achieve impressive zero-shot recognition performance by mapping class specific text queries to image content.
We propose to leverage available data to learn, for each class, an optimal word embedding as a function of the visual content.
By learning new word embeddings on an otherwise frozen model, we are able to retain zero-shot capabilities for new classes, easily adapt models to new datasets, and adjust potentially erroneous, non-descriptive or ambiguous class names.
arXiv Detail & Related papers (2023-04-04T14:34:44Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
We propose a Siamese LSTM Network approach to extract -- via supervised learning -- an embedding of company name strings.
We analyse how an Active Learning approach to prioritise the samples to be labelled leads to a more efficient overall learning pipeline.
arXiv Detail & Related papers (2023-03-07T15:07:57Z) - Dynamic Named Entity Recognition [5.9401550252715865]
We introduce a new task: Dynamic Named Entity Recognition (DNER)
DNER provides a framework to better evaluate the ability of algorithms to extract entities by exploiting the context.
We evaluate baseline models and present experiments reflecting issues and research axes related to this novel task.
arXiv Detail & Related papers (2023-02-16T15:50:02Z) - Few-Shot Nested Named Entity Recognition [4.8693196802491405]
This paper is the first one dedicated to studying the few-shot nested NER task.
We propose a Biaffine-based Contrastive Learning (BCL) framework to learn contextual dependency to distinguish nested entities.
The BCL outperformed three baseline models on the 1-shot and 5-shot tasks in terms of F1 score.
arXiv Detail & Related papers (2022-12-02T03:42:23Z) - An Empirical Investigation of Representation Learning for Imitation [76.48784376425911]
Recent work in vision, reinforcement learning, and NLP has shown that auxiliary representation learning objectives can reduce the need for large amounts of expensive, task-specific data.
We propose a modular framework for constructing representation learning algorithms, then use our framework to evaluate the utility of representation learning for imitation.
arXiv Detail & Related papers (2022-05-16T11:23:42Z) - Named entity recognition architecture combining contextual and global
features [5.92351086183376]
Named entity recognition (NER) is an information extraction technique that aims to locate and classify named entities.
We propose the combination of contextual features from XLNet and global features from Graph Convolution Network (GCN) to enhance NER performance.
arXiv Detail & Related papers (2021-12-15T10:54:36Z) - Boosting Entity-aware Image Captioning with Multi-modal Knowledge Graph [96.95815946327079]
It is difficult to learn the association between named entities and visual cues due to the long-tail distribution of named entities.
We propose a novel approach that constructs a multi-modal knowledge graph to associate the visual objects with named entities.
arXiv Detail & Related papers (2021-07-26T05:50:41Z) - Interpretability Analysis for Named Entity Recognition to Understand
System Predictions and How They Can Improve [49.878051587667244]
We examine the performance of several variants of LSTM-CRF architectures for named entity recognition.
We find that context representations do contribute to system performance, but that the main factor driving high performance is learning the name tokens themselves.
We enlist human annotators to evaluate the feasibility of inferring entity types from the context alone and find that, while people are not able to infer the entity type either for the majority of the errors made by the context-only system, there is some room for improvement.
arXiv Detail & Related papers (2020-04-09T14:37:12Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
We propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions.
We show the recognition backbone can be substantially enhanced for more robust representation learning.
Our approach achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft)
arXiv Detail & Related papers (2020-03-31T12:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.