Ant Colony Inspired Machine Learning Algorithm for Identifying and
Emulating Virtual Sensors
- URL: http://arxiv.org/abs/2011.00836v2
- Date: Sat, 27 Mar 2021 08:10:38 GMT
- Title: Ant Colony Inspired Machine Learning Algorithm for Identifying and
Emulating Virtual Sensors
- Authors: Pranav Mani, ES Gopi, Koushik Kumaran, Hrishikesh Shekhar, Sharan
Chandra
- Abstract summary: It should be possible to emulate the output of certain sensors based on other sensors.
In order to identify the subset of sensors whose readings can be emulated, the sensors must be grouped into clusters.
This paper proposes an end-to-end algorithmic solution, to realise virtual sensors in such systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scale of systems employed in industrial environments demands a large
number of sensors to facilitate meticulous monitoring and functioning. These
requirements could potentially lead to inefficient system designs. The data
coming from various sensors are often correlated due to the underlying
relations in the system parameters that the sensors monitor. In theory, it
should be possible to emulate the output of certain sensors based on other
sensors. Tapping into such possibilities holds tremendous advantages in terms
of reducing system design complexity. In order to identify the subset of
sensors whose readings can be emulated, the sensors must be grouped into
clusters. Complex systems generally have a large quantity of sensors that
collect and store data over prolonged periods of time. This leads to the
accumulation of massive amounts of data. In this paper we propose an end-to-end
algorithmic solution, to realise virtual sensors in such systems. This
algorithm splits the dataset into blocks and clusters each of them
individually. It then fuses these clustering solutions to obtain a global
solution using an Ant Colony inspired technique, FAC2T. Having grouped the
sensors into clusters, we select representative sensors from each cluster.
These sensors are retained in the system while the other sensors readings are
emulated by applying supervised learning algorithms.
Related papers
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Data-Induced Interactions of Sparse Sensors [3.050919759387984]
We take a thermodynamic view to compute the full landscape of sensor interactions induced by the training data.
Mapping out these data-induced sensor interactions allows combining them with external selection criteria and anticipating sensor replacement impacts.
arXiv Detail & Related papers (2023-07-21T18:13:37Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
Augmenting policies with additional sensor inputs, such as RGB + depth cameras, is a straightforward approach to improving robot perception capabilities.
We show that using the Variational Information Bottleneck to regularize convolutional neural networks improves generalization to held-out domains.
We demonstrate that our method is able to help close the sim-to-real gap and successfully fuse RGB and depth modalities.
arXiv Detail & Related papers (2022-02-15T17:38:30Z) - Representation Learning for Remote Sensing: An Unsupervised Sensor
Fusion Approach [0.0]
We propose Contrastive Sensor Fusion, which exploits coterminous data from multiple sources to learn useful representations of every possible combination of those sources.
Using a dataset of 47 million unlabeled coterminous image triplets, we train an encoder to produce meaningful representations from any possible combination of channels from the input sensors.
These representations outperform fully supervised ImageNet weights on a remote sensing classification task and improve as more sensors are fused.
arXiv Detail & Related papers (2021-08-11T08:32:58Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
We evaluate how using a combination of different sensors affects the detection of the environment in which the vehicles move and operate.
The final objective is to identify the optimal setup that would minimize the amount of data to be distributed over the channel.
arXiv Detail & Related papers (2021-04-23T18:58:37Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors.
We show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2021-02-11T02:37:27Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Learning Camera Miscalibration Detection [83.38916296044394]
This paper focuses on a data-driven approach to learn the detection of miscalibration in vision sensors, specifically RGB cameras.
Our contributions include a proposed miscalibration metric for RGB cameras and a novel semi-synthetic dataset generation pipeline based on this metric.
By training a deep convolutional neural network, we demonstrate the effectiveness of our pipeline to identify whether a recalibration of the camera's intrinsic parameters is required or not.
arXiv Detail & Related papers (2020-05-24T10:32:49Z) - Data-Driven Construction of Data Center Graph of Things for Anomaly
Detection [5.160640187262777]
Data center (DC) contains both IT devices and facility equipment, and the operation of a DC requires a high-quality monitoring system.
There are lots of sensors in computer rooms for the DC monitoring system, and they are inherently related.
This work proposes a data-driven pipeline to build a DC graph of things (sensor graph) from the time series measurements of sensors.
arXiv Detail & Related papers (2020-04-27T01:54:43Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.