Image Inpainting with Learnable Feature Imputation
- URL: http://arxiv.org/abs/2011.01077v1
- Date: Mon, 2 Nov 2020 16:05:32 GMT
- Title: Image Inpainting with Learnable Feature Imputation
- Authors: H{\aa}kon Hukkel{\aa}s, Frank Lindseth, Rudolf Mester
- Abstract summary: A regular convolution layer applying a filter in the same way over known and unknown areas causes visual artifacts in the inpainted image.
We propose (layer-wise) feature imputation of the missing input values to a convolution.
We present comparisons on CelebA-HQ and Places2 to current state-of-the-art to validate our model.
- Score: 8.293345261434943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A regular convolution layer applying a filter in the same way over known and
unknown areas causes visual artifacts in the inpainted image. Several studies
address this issue with feature re-normalization on the output of the
convolution. However, these models use a significant amount of learnable
parameters for feature re-normalization, or assume a binary representation of
the certainty of an output. We propose (layer-wise) feature imputation of the
missing input values to a convolution. In contrast to learned feature
re-normalization, our method is efficient and introduces a minimal number of
parameters. Furthermore, we propose a revised gradient penalty for image
inpainting, and a novel GAN architecture trained exclusively on adversarial
loss. Our quantitative evaluation on the FDF dataset reflects that our revised
gradient penalty and alternative convolution improves generated image quality
significantly. We present comparisons on CelebA-HQ and Places2 to current
state-of-the-art to validate our model.
Related papers
- Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution [6.055006354743854]
We develop an algorithm that utilize a low-resolution image combined with features extracted from multiple low-quality images to generate a super-resolved image.
Unlike other algorithms, our approach recovers facial features without explicitly providing attribute information.
This is the first time multi-features combined with low-resolution images are used as conditioners to generate more reliable super-resolution images.
arXiv Detail & Related papers (2024-08-27T20:08:33Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) aims to develop methods to measure image quality in alignment with human perception without the need for a high-quality reference image.
We propose a self-supervised approach named ARNIQA for modeling the image distortion manifold to obtain quality representations in an intrinsic manner.
arXiv Detail & Related papers (2023-10-20T17:22:25Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - WavePaint: Resource-efficient Token-mixer for Self-supervised Inpainting [2.3014300466616078]
This paper diverges from vision transformers by using a computationally-efficient WaveMix-based fully convolutional architecture -- WavePaint.
It uses a 2D-discrete wavelet transform (DWT) for spatial and multi-resolution token-mixing along with convolutional layers.
Our model even outperforms current GAN-based architectures in CelebA-HQ dataset without using an adversarially trainable discriminator.
arXiv Detail & Related papers (2023-07-01T18:41:34Z) - Image Restoration with Mean-Reverting Stochastic Differential Equations [9.245782611878752]
This paper presents a differential equation (SDE) approach for general-purpose image restoration.
By simulating the corresponding reverse-time SDE, we are able to restore the origin of the low-quality image.
Experiments show that our proposed method achieves highly competitive performance in quantitative comparisons on image deraining, deblurring, and denoising.
arXiv Detail & Related papers (2023-01-27T13:20:48Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
We study the problem of generating adversarial examples in a black-box setting, where we only have access to a zeroth order oracle.
We use this setting to find fast one-step adversarial attacks, akin to a black-box version of the Fast Gradient Sign Method(FGSM)
We show that the method uses fewer queries and achieves higher attack success rates than the current state of the art.
arXiv Detail & Related papers (2020-10-08T18:36:51Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.