The Gap on GAP: Tackling the Problem of Differing Data Distributions in
Bias-Measuring Datasets
- URL: http://arxiv.org/abs/2011.01837v3
- Date: Tue, 15 Dec 2020 16:36:39 GMT
- Title: The Gap on GAP: Tackling the Problem of Differing Data Distributions in
Bias-Measuring Datasets
- Authors: Vid Kocijan, Oana-Maria Camburu, Thomas Lukasiewicz
- Abstract summary: Diagnostic datasets that can detect biased models are an important prerequisite for bias reduction within natural language processing.
undesired patterns in the collected data can make such tests incorrect.
We introduce a theoretically grounded method for weighting test samples to cope with such patterns in the test data.
- Score: 58.53269361115974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnostic datasets that can detect biased models are an important
prerequisite for bias reduction within natural language processing. However,
undesired patterns in the collected data can make such tests incorrect. For
example, if the feminine subset of a gender-bias-measuring coreference
resolution dataset contains sentences with a longer average distance between
the pronoun and the correct candidate, an RNN-based model may perform worse on
this subset due to long-term dependencies. In this work, we introduce a
theoretically grounded method for weighting test samples to cope with such
patterns in the test data. We demonstrate the method on the GAP dataset for
coreference resolution. We annotate GAP with spans of all personal names and
show that examples in the female subset contain more personal names and a
longer distance between pronouns and their referents, potentially affecting the
bias score in an undesired way. Using our weighting method, we find the set of
weights on the test instances that should be used for coping with these
correlations, and we re-evaluate 16 recently released coreference models.
Related papers
- Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
We study the "dataset bias" problem from a statistical standpoint.
We identify the main cause of the problem as the strong correlation between a class attribute u and a non-class attribute b.
We propose to mitigate dataset bias via either weighting the objective of each sample n by frac1p(u_n|b_n) or sampling that sample with a weight proportional to frac1p(u_n|b_n).
arXiv Detail & Related papers (2024-02-05T22:58:06Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
We compare the impact of debiasing on performance across multiple downstream tasks using a wide-range of benchmark datasets.
Experiments show that the effects of debiasing are consistently emphunderestimated across all tasks.
arXiv Detail & Related papers (2023-09-16T20:25:34Z) - Counter-GAP: Counterfactual Bias Evaluation through Gendered Ambiguous
Pronouns [53.62845317039185]
Bias-measuring datasets play a critical role in detecting biased behavior of language models.
We propose a novel method to collect diverse, natural, and minimally distant text pairs via counterfactual generation.
We show that four pre-trained language models are significantly more inconsistent across different gender groups than within each group.
arXiv Detail & Related papers (2023-02-11T12:11:03Z) - MABEL: Attenuating Gender Bias using Textual Entailment Data [20.489427903240017]
We propose MABEL, an intermediate pre-training approach for mitigating gender bias in contextualized representations.
Key to our approach is the use of a contrastive learning objective on counterfactually augmented, gender-balanced entailment pairs.
We show that MABEL outperforms previous task-agnostic debiasing approaches in terms of fairness.
arXiv Detail & Related papers (2022-10-26T18:36:58Z) - Generating Data to Mitigate Spurious Correlations in Natural Language
Inference Datasets [27.562256973255728]
Natural language processing models often exploit spurious correlations between task-independent features and labels in datasets to perform well only within the distributions they are trained on.
We propose to tackle this problem by generating a debiased version of a dataset, which can then be used to train a debiased, off-the-shelf model.
Our approach consists of 1) a method for training data generators to generate high-quality, label-consistent data samples; and 2) a filtering mechanism for removing data points that contribute to spurious correlations.
arXiv Detail & Related papers (2022-03-24T09:08:05Z) - Double Perturbation: On the Robustness of Robustness and Counterfactual
Bias Evaluation [109.06060143938052]
We propose a "double perturbation" framework to uncover model weaknesses beyond the test dataset.
We apply this framework to study two perturbation-based approaches that are used to analyze models' robustness and counterfactual bias in English.
arXiv Detail & Related papers (2021-04-12T06:57:36Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.