Deep Joint Transmission-Recognition for Multi-View Cameras
- URL: http://arxiv.org/abs/2011.01902v1
- Date: Tue, 3 Nov 2020 18:27:49 GMT
- Title: Deep Joint Transmission-Recognition for Multi-View Cameras
- Authors: Ezgi Ozyilkan, Mikolaj Jankowski
- Abstract summary: We propose joint transmission-recognition schemes for efficient inference at the wireless edge.
Motivated by the surveillance applications with wireless cameras, we consider the person classification task over a wireless channel carried out by multi-view cameras.
- Score: 1.6244541005112747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose joint transmission-recognition schemes for efficient inference at
the wireless edge. Motivated by the surveillance applications with wireless
cameras, we consider the person classification task over a wireless channel
carried out by multi-view cameras operating as edge devices. We introduce deep
neural network (DNN) based compression schemes which incorporate digital
(separate) transmission and joint source-channel coding (JSCC) methods. We
evaluate the proposed device-edge communication schemes under different channel
SNRs, bandwidth and power constraints. We show that the JSCC schemes not only
improve the end-to-end accuracy but also simplify the encoding process and
provide graceful degradation with channel quality.
Related papers
- TBSN: Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising [94.09442506816724]
Blind-spot networks (BSN) have been prevalent network architectures in self-supervised image denoising (SSID)
We present a transformer-based blind-spot network (TBSN) by analyzing and redesigning the transformer operators that meet the blind-spot requirement.
For spatial self-attention, an elaborate mask is applied to the attention matrix to restrict its receptive field, thus mimicking the dilated convolution.
For channel self-attention, we observe that it may leak the blind-spot information when the channel number is greater than spatial size in the deep layers of multi-scale architectures.
arXiv Detail & Related papers (2024-04-11T15:39:10Z) - Distributed Deep Joint Source-Channel Coding with Decoder-Only Side
Information [6.411633100057159]
We consider low-latency image transmission over a noisy wireless channel when correlated side information is present only at the receiver side.
We propose a novel neural network architecture that incorporates the decoder-only side information at multiple stages at the receiver side.
arXiv Detail & Related papers (2023-10-06T15:17:45Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - DeepJSCC-Q: Constellation Constrained Deep Joint Source-Channel Coding [6.55705721360334]
We show that DeepJSCC-Q can achieve similar performance to prior works that allow any complex valued channel input.
DeepJSCC-Q preserves the graceful degradation of image quality in unpredictable channel conditions.
arXiv Detail & Related papers (2022-06-16T11:43:50Z) - DeepJSCC-Q: Channel Input Constrained Deep Joint Source-Channel Coding [5.046831208137847]
DeepJSCC-Q is an end-to-end optimized joint source-channel coding scheme for wireless image transmission.
It preserves the graceful degradation of image quality observed in prior work when channel conditions worsen.
arXiv Detail & Related papers (2021-11-25T11:59:17Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
We consider the scenario in which images are transmitted progressively in layers over time or frequency.
DeepJSCC-$l$ is an innovative solution that uses convolutional autoencoders.
DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes.
arXiv Detail & Related papers (2020-09-26T00:11:50Z) - Wireless Image Retrieval at the Edge [20.45405359815043]
We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server.
Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link.
We propose two alternative schemes based on digital and analog communications, respectively.
arXiv Detail & Related papers (2020-07-21T16:15:40Z) - Channel-Level Variable Quantization Network for Deep Image Compression [50.3174629451739]
We propose a channel-level variable quantization network to dynamically allocate more convolutions for significant channels and withdraws for negligible channels.
Our method achieves superior performance and can produce much better visual reconstructions.
arXiv Detail & Related papers (2020-07-15T07:20:39Z) - Decentralized Learning for Channel Allocation in IoT Networks over
Unlicensed Bandwidth as a Contextual Multi-player Multi-armed Bandit Game [134.88020946767404]
We study a decentralized channel allocation problem in an ad-hoc Internet of Things network underlaying on the spectrum licensed to a primary cellular network.
Our study maps this problem into a contextual multi-player, multi-armed bandit game, and proposes a purely decentralized, three-stage policy learning algorithm through trial-and-error.
arXiv Detail & Related papers (2020-03-30T10:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.