HILONet: Hierarchical Imitation Learning from Non-Aligned Observations
- URL: http://arxiv.org/abs/2011.02671v2
- Date: Wed, 23 Jun 2021 04:47:16 GMT
- Title: HILONet: Hierarchical Imitation Learning from Non-Aligned Observations
- Authors: Shanqi Liu, Junjie Cao, Wenzhou Chen, Licheng Wen, Yong Liu
- Abstract summary: It is challenging learning from demonstrated observation-only trajectories in a non-time-aligned environment.
We propose a new imitation learning approach called Hierarchical Learning from Observation(HILONet), which adopts a hierarchical structure to choose feasible sub-goals.
- Score: 8.258872189267045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is challenging learning from demonstrated observation-only trajectories in
a non-time-aligned environment because most imitation learning methods aim to
imitate experts by following the demonstration step-by-step. However, aligned
demonstrations are seldom obtainable in real-world scenarios. In this work, we
propose a new imitation learning approach called Hierarchical Imitation
Learning from Observation(HILONet), which adopts a hierarchical structure to
choose feasible sub-goals from demonstrated observations dynamically. Our
method can solve all kinds of tasks by achieving these sub-goals, whether it
has a single goal position or not. We also present three different ways to
increase sample efficiency in the hierarchical structure. We conduct extensive
experiments using several environments. The results show the improvement in
both performance and learning efficiency.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Robust Visual Imitation Learning with Inverse Dynamics Representations [32.806294517277976]
We develop an inverse dynamics state representation learning objective to align the expert environment and the learning environment.
With the abstract state representation, we design an effective reward function, which thoroughly measures the similarity between behavior data and expert data.
Our approach can achieve a near-expert performance in most environments, and significantly outperforms the state-of-the-art visual IL methods and robust IL methods.
arXiv Detail & Related papers (2023-10-22T11:47:35Z) - Imitation Learning from Observation through Optimal Transport [25.398983671932154]
Imitation Learning from Observation (ILfO) is a setting in which a learner tries to imitate the behavior of an expert.
We show that existing methods can be simplified to generate a reward function without requiring learned models or adversarial learning.
We demonstrate the effectiveness of this simple approach on a variety of continuous control tasks and find that it surpasses the state of the art in the IlfO setting.
arXiv Detail & Related papers (2023-10-02T20:53:20Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Sample-efficient Adversarial Imitation Learning [45.400080101596956]
We propose a self-supervised representation-based adversarial imitation learning method to learn state and action representations.
We show a 39% relative improvement over existing adversarial imitation learning methods on MuJoCo in a setting limited to 100 expert state-action pairs.
arXiv Detail & Related papers (2023-03-14T12:36:01Z) - Out-of-Dynamics Imitation Learning from Multimodal Demonstrations [68.46458026983409]
We study out-of-dynamics imitation learning (OOD-IL), which relaxes the assumption to that the demonstrator and the imitator have the same state spaces.
OOD-IL enables imitation learning to utilize demonstrations from a wide range of demonstrators but introduces a new challenge.
We develop a better transferability measurement to tackle this newly-emerged challenge.
arXiv Detail & Related papers (2022-11-13T07:45:06Z) - Inferring Versatile Behavior from Demonstrations by Matching Geometric
Descriptors [72.62423312645953]
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps.
Current Imitation Learning algorithms often only consider unimodal expert demonstrations and act in a state-action-based setting.
Instead, we combine a mixture of movement primitives with a distribution matching objective to learn versatile behaviors that match the expert's behavior and versatility.
arXiv Detail & Related papers (2022-10-17T16:42:59Z) - Sample Efficient Imitation Learning via Reward Function Trained in
Advance [2.66512000865131]
Imitation learning (IL) is a framework that learns to imitate expert behavior from demonstrations.
In this article, we make an effort to improve sample efficiency by introducing a novel scheme of inverse reinforcement learning.
arXiv Detail & Related papers (2021-11-23T08:06:09Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
In many real-world imitation learning tasks, the demonstrator and the learner have to act in different but full observation spaces.
In this work, we model the above learning problem as Heterogeneous Observations Learning (HOIL)
We propose the Importance Weighting with REjection (IWRE) algorithm based on the techniques of importance-weighting, learning with rejection, and active querying to solve the key challenge of occupancy measure matching.
arXiv Detail & Related papers (2021-06-17T05:44:04Z) - Hierarchically Decoupled Spatial-Temporal Contrast for Self-supervised
Video Representation Learning [6.523119805288132]
We present a novel technique for self-supervised video representation learning by: (a) decoupling the learning objective into two contrastive subtasks respectively emphasizing spatial and temporal features, and (b) performing it hierarchically to encourage multi-scale understanding.
arXiv Detail & Related papers (2020-11-23T08:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.