Architecture Agnostic Neural Networks
- URL: http://arxiv.org/abs/2011.02712v2
- Date: Fri, 11 Dec 2020 05:06:51 GMT
- Title: Architecture Agnostic Neural Networks
- Authors: Sabera Talukder, Guruprasad Raghavan, Yisong Yue
- Abstract summary: We create families of architecture agnostic neural networks not trained via backpropagation.
These high-performing network families share the same sparsity, distribution of binary weights, and succeed in both static and dynamic tasks.
- Score: 33.803822613725984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore an alternate method for synthesizing neural network
architectures, inspired by the brain's stochastic synaptic pruning. During a
person's lifetime, numerous distinct neuronal architectures are responsible for
performing the same tasks. This indicates that biological neural networks are,
to some degree, architecture agnostic. However, artificial networks rely on
their fine-tuned weights and hand-crafted architectures for their remarkable
performance. This contrast begs the question: Can we build artificial
architecture agnostic neural networks? To ground this study we utilize sparse,
binary neural networks that parallel the brain's circuits. Within this sparse,
binary paradigm we sample many binary architectures to create families of
architecture agnostic neural networks not trained via backpropagation. These
high-performing network families share the same sparsity, distribution of
binary weights, and succeed in both static and dynamic tasks. In summation, we
create an architecture manifold search procedure to discover families or
architecture agnostic neural networks.
Related papers
- Structure of Artificial Neural Networks -- Empirical Investigations [0.0]
Within one decade, Deep Learning overtook the dominating solution methods of countless problems of artificial intelligence.
With a formal definition for structures of neural networks, neural architecture search problems and solution methods can be formulated under a common framework.
Does structure make a difference or can it be chosen arbitrarily?
arXiv Detail & Related papers (2024-10-12T16:13:28Z) - Simultaneous Weight and Architecture Optimization for Neural Networks [6.2241272327831485]
We introduce a novel neural network training framework that transforms the process by learning architecture and parameters simultaneously with gradient descent.
Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other.
Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
arXiv Detail & Related papers (2024-10-10T19:57:36Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Neural Architecture Retrieval [27.063268631346713]
We define a new problem Neural Architecture Retrieval which retrieves a set of existing neural architectures with similar designs to the query neural architecture.
Existing graph pre-training strategies cannot address the computational graph in neural architectures due to the graph size and motifs.
We introduce multi-level contrastive learning to achieve accurate graph representation learning.
arXiv Detail & Related papers (2023-07-16T01:56:41Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Creating Powerful and Interpretable Models withRegression Networks [2.2049183478692584]
We propose a novel architecture, Regression Networks, which combines the power of neural networks with the understandability of regression analysis.
We demonstrate that the models exceed the state-of-the-art performance of interpretable models on several benchmark datasets.
arXiv Detail & Related papers (2021-07-30T03:37:00Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
We propose a principled approach, rooted in differentiable neural architecture search, to automatically define branching structures in a multi-task neural network.
We show that our approach consistently finds high-performing branching structures within limited resource budgets.
arXiv Detail & Related papers (2020-08-24T09:49:19Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.