Dynamically Throttleable Neural Networks (TNN)
- URL: http://arxiv.org/abs/2011.02836v1
- Date: Sun, 1 Nov 2020 20:17:42 GMT
- Title: Dynamically Throttleable Neural Networks (TNN)
- Authors: Hengyue Liu, Samyak Parajuli, Jesse Hostetler, Sek Chai, Bir Bhanu
- Abstract summary: Conditional computation for Deep Neural Networks (DNNs) reduce overall computational load and improve model accuracy by running a subset of the network.
We present a runtime throttleable neural network (TNN) that can adaptively self-regulate its own performance target and computing resources.
- Score: 24.052859278938858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional computation for Deep Neural Networks (DNNs) reduce overall
computational load and improve model accuracy by running a subset of the
network. In this work, we present a runtime throttleable neural network (TNN)
that can adaptively self-regulate its own performance target and computing
resources. We designed TNN with several properties that enable more flexibility
for dynamic execution based on runtime context. TNNs are defined as
throttleable modules gated with a separately trained controller that generates
a single utilization control parameter. We validate our proposal on a number of
experiments, including Convolution Neural Networks (CNNs such as VGG, ResNet,
ResNeXt, DenseNet) using CiFAR-10 and ImageNet dataset, for object
classification and recognition tasks. We also demonstrate the effectiveness of
dynamic TNN execution on a 3D Convolustion Network (C3D) for a hand gesture
task. Results show that TNN can maintain peak accuracy performance compared to
vanilla solutions, while providing a graceful reduction in computational
requirement, down to 74% reduction in latency and 52% energy savings.
Related papers
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Bayesian Inference Accelerator for Spiking Neural Networks [3.145754107337963]
spiking neural networks (SNNs) have the potential to reduce computational area and power.
In this work, we demonstrate an optimization framework for developing and implementing efficient Bayesian SNNs in hardware.
We demonstrate accuracies comparable to Bayesian binary networks with full-precision Bernoulli parameters, while requiring up to $25times$ less spikes.
arXiv Detail & Related papers (2024-01-27T16:27:19Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Sparsifying Binary Networks [3.8350038566047426]
Binary neural networks (BNNs) have demonstrated their ability to solve complex tasks with comparable accuracy as full-precision deep neural networks (DNNs)
Despite the recent improvements, they suffer from a fixed and limited compression factor that may result insufficient for certain devices with very limited resources.
We propose sparse binary neural networks (SBNNs), a novel model and training scheme which introduces sparsity in BNNs and a new quantization function for binarizing the network's weights.
arXiv Detail & Related papers (2022-07-11T15:54:41Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
Spiking neural networks (SNNs) operate via binary spikes distributed over time.
SOTA training strategies for SNNs involve conversion from a non-spiking deep neural network (DNN)
We propose a new training algorithm that accurately captures these distributions, minimizing the error between the DNN and converted SNN.
arXiv Detail & Related papers (2021-12-22T18:47:45Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - DTNN: Energy-efficient Inference with Dendrite Tree Inspired Neural
Networks for Edge Vision Applications [2.1800759000607024]
We propose Dendrite-Tree based Neural Network (DTNN) for energy-efficient inference with table lookup operations enabled by activation quantization.
DTNN achieved significant energy saving (19.4X and 64.9X improvement on ResNet-18 and VGG-11 with ImageNet, respectively) with negligible loss of accuracy.
arXiv Detail & Related papers (2021-05-25T11:44:12Z) - Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks [2.649890751459017]
This paper proposes a novel learning approach to obtain sparse fully connected layers in neural networks (NNs) automatically.
We design a switcher neural network (SNN) to optimize the structure of the task neural network (TNN)
arXiv Detail & Related papers (2021-03-26T11:29:40Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.