Photon Condensation and Enhanced Magnetism in Cavity QED
- URL: http://arxiv.org/abs/2011.03753v5
- Date: Wed, 13 Oct 2021 08:42:16 GMT
- Title: Photon Condensation and Enhanced Magnetism in Cavity QED
- Authors: Juan Rom\'an-Roche, Fernando Luis and David Zueco
- Abstract summary: A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A system of magnetic molecules coupled to microwave cavities ($LC$
resonators) undergoes the equilibrium superradiant phase transition. The
transition is experimentally observable. The effect of the coupling is first
illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model
and then by the modification of the magnetic phase diagram of ${\rm Fe_8}$
dipolar crystals, exemplifying the cooperation between intrinsic and
photon-induced spin-spin interactions. Finally, a transmission experiment is
shown to resolve the transition, measuring the quantum electrodynamical control
of magnetism.
Related papers
- A Gallery of Soft Modes: Theory and Experiment at a Ferromagnetic Quantum Phase Transition [0.0]
We examine the low-energy excitations in the vicinity of the quantum critical point in LiHoF$_4$, a physical realization of the Transverse Field Ising Model.
Microwave spectroscopy in tunable loop-gap resonator structures identifies and characterizes the soft mode and higher-energy electronuclear states.
arXiv Detail & Related papers (2024-08-07T02:27:00Z) - Unconventional magnetism mediated by spin-phonon-photon coupling [0.0]
We predict a biquadratic long-range interaction between spins mediated by their coupling to phonons hybridized with vacuum photons into polaritons.
The resulting ordered state is reminiscent of superconductivity mediated by the exchange of virtual phonons.
arXiv Detail & Related papers (2024-05-15T10:58:03Z) - Quantum Phase Transitions in a Generalized Dicke Model [2.723809629055624]
We investigate a generalized Dicke model by introducing two interacting spin ensembles coupled with a single-mode bosonic field.
Ferromagnetic spin-spin interaction can significantly reduce the required spin-boson coupling strength to observe the superradiant phase.
To examine higher-order quantum effects beyond the mean-field contribution, we utilize the Holstein-Primakoff transformation.
arXiv Detail & Related papers (2023-10-29T11:00:56Z) - Coherent control of orbital wavefunctions in the quantum spin liquid
$Tb_{2}Ti_{2}O_{7}$ [0.0]
We show coherent control of orbital wavefunctions in pyrochlore $Tb_2Ti_2O_7$.
We show that resonant excitation with a strong THz pulse creates a coherent superposition of the lowest energy Tb 4f states.
arXiv Detail & Related papers (2023-09-22T09:53:13Z) - Quantum Simulation of an Extended Dicke Model with a Magnetic Solid [3.152441795183668]
We show the existence of a novel atomically ordered phase in addition to the superradiant and normal phases.
These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body condensed matter systems.
arXiv Detail & Related papers (2023-02-12T23:55:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.