Multiscale Point Cloud Geometry Compression
- URL: http://arxiv.org/abs/2011.03799v1
- Date: Sat, 7 Nov 2020 16:11:16 GMT
- Title: Multiscale Point Cloud Geometry Compression
- Authors: Jianqiang Wang, Dandan Ding, Zhu Li, Zhan Ma
- Abstract summary: We propose a multiscale-to-end learning framework which hierarchically reconstructs the 3D Point Cloud Geometry.
The framework is developed on top of a sparse convolution based autoencoder for point cloud compression and reconstruction.
- Score: 29.605320327889142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed the growth of point cloud based applications
because of its realistic and fine-grained representation of 3D objects and
scenes. However, it is a challenging problem to compress sparse, unstructured,
and high-precision 3D points for efficient communication. In this paper,
leveraging the sparsity nature of point cloud, we propose a multiscale
end-to-end learning framework which hierarchically reconstructs the 3D Point
Cloud Geometry (PCG) via progressive re-sampling. The framework is developed on
top of a sparse convolution based autoencoder for point cloud compression and
reconstruction. For the input PCG which has only the binary occupancy
attribute, our framework translates it to a downscaled point cloud at the
bottleneck layer which possesses both geometry and associated feature
attributes. Then, the geometric occupancy is losslessly compressed using an
octree codec and the feature attributes are lossy compressed using a learned
probabilistic context model.Compared to state-of-the-art Video-based Point
Cloud Compression (V-PCC) and Geometry-based PCC (G-PCC) schemes standardized
by the Moving Picture Experts Group (MPEG), our method achieves more than 40%
and 70% BD-Rate (Bjontegaard Delta Rate) reduction, respectively. Its encoding
runtime is comparable to that of G-PCC, which is only 1.5% of V-PCC.
Related papers
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds [18.244200436103156]
We propose an efficient attention-based method for lossy compression of point cloud attributes leveraging on an autoencoder architecture.
Experiments show that our method achieves an average improvement of 1.15 dB and 2.13 dB in BD-PSNR of Y channel and YUV channel, respectively.
arXiv Detail & Related papers (2024-10-23T12:32:21Z) - SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
We propose an end-to-end compression method for dense point clouds.
The proposed method combines a frequency sampling module, an adaptive scale feature extraction module with geometry assistance, and a global hyperprior entropy model.
arXiv Detail & Related papers (2024-09-16T13:59:43Z) - The JPEG Pleno Learning-based Point Cloud Coding Standard: Serving Man and Machine [49.16996486119006]
Deep learning has emerged as a powerful tool in point cloud coding.
JPEG has recently finalized the JPEG Pleno Learning-based Point Cloud Coding standard.
This paper provides a complete technical description of the JPEG PCC standard.
arXiv Detail & Related papers (2024-09-12T15:20:23Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - Hierarchical Prior-based Super Resolution for Point Cloud Geometry
Compression [39.052583172727324]
The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds.
This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression.
arXiv Detail & Related papers (2024-02-17T11:15:38Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
We leverage the human geometric prior in geometry redundancy removal of point clouds.
We can envisage high-resolution human point clouds as a combination of geometric priors and structural deviations.
The proposed framework can operate in a play-and-plug fashion with existing learning based point cloud compression methods.
arXiv Detail & Related papers (2023-05-02T10:35:20Z) - GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color
Attribute [51.4803148196217]
We propose a graph-based quality enhancement network (GQE-Net) to reduce color distortion in point clouds.
GQE-Net uses geometry information as an auxiliary input and graph convolution blocks to extract local features efficiently.
Experimental results show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-24T02:33:45Z) - GRASP-Net: Geometric Residual Analysis and Synthesis for Point Cloud
Compression [16.98171403698783]
We propose a heterogeneous approach with deep learning for lossy point cloud geometry compression.
Specifically, a point-based network is applied to convert the erratic local details to latent features residing on the coarse point cloud.
arXiv Detail & Related papers (2022-09-09T17:09:02Z) - Efficient dynamic point cloud coding using Slice-Wise Segmentation [10.850101961203748]
MPEG recently developed a video-based point cloud compression (V-PCC) standard for dynamic point cloud coding.
Patch generations and self-occluded points in the 3D to the 2D projection are the main reasons for missing data using V-PCC.
This paper proposes a new method that introduces overlapping slicing to decrease the number of patches generated and the amount of data lost.
arXiv Detail & Related papers (2022-08-17T04:23:45Z) - Inter-Frame Compression for Dynamic Point Cloud Geometry Coding [14.79613731546357]
We propose a lossy compression scheme that predicts the latent representation of the current frame using the previous frame.
The proposed network utilizes convolutions with hierarchical multiscale 3D feature learning to encode the current frame.
The proposed method achieves more than 88% BD-Rate (Bjontegaard Delta Rate) reduction against G-PCCv20 Octree.
arXiv Detail & Related papers (2022-07-25T22:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.