PRVNet: A Novel Partially-Regularized Variational Autoencoders for
Massive MIMO CSI Feedback
- URL: http://arxiv.org/abs/2011.04178v2
- Date: Mon, 18 Jul 2022 14:50:23 GMT
- Title: PRVNet: A Novel Partially-Regularized Variational Autoencoders for
Massive MIMO CSI Feedback
- Authors: Mostafa Hussien, Kim Khoa Nguyen, Mohamed Cheriet
- Abstract summary: In a multiple-input multiple-output frequency-division duplexing (MIMO-FDD) system, the user equipment (UE) sends the downlink channel state information (CSI) to the base station to report link status.
In this paper, we introduce PRVNet, a neural network architecture inspired by variational autoencoders (VAE) to compress the CSI matrix before sending it back to the base station.
- Score: 15.972209500908642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a multiple-input multiple-output frequency-division duplexing (MIMO-FDD)
system, the user equipment (UE) sends the downlink channel state information
(CSI) to the base station to report link status. Due to the complexity of MIMO
systems, the overhead incurred in sending this information negatively affects
the system bandwidth. Although this problem has been widely considered in the
literature, prior work generally assumes an ideal feedback channel. In this
paper, we introduce PRVNet, a neural network architecture inspired by
variational autoencoders (VAE) to compress the CSI matrix before sending it
back to the base station under noisy channel conditions. Moreover, we propose a
customized loss function that best suits the special characteristics of the
problem being addressed. We also introduce an additional regularization
hyperparameter for the learning objective, which is crucial for achieving
competitive performance. In addition, we provide an efficient way to tune this
hyperparameter using KL-annealing. Experimental results show the proposed model
outperforms the benchmark models including two deep learning-based models in a
noise-free feedback channel assumption. In addition, the proposed model
achieves an outstanding performance under different noise levels for additive
white Gaussian noise feedback channels.
Related papers
- Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [27.049330099874396]
This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model.
Our experimental results demonstrate significant improvements in pixel-level metrics like peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS)
arXiv Detail & Related papers (2024-07-26T02:34:25Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
This paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism.
The DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders.
Our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
arXiv Detail & Related papers (2023-11-09T05:24:20Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - A Study of Designing Compact Audio-Visual Wake Word Spotting System
Based on Iterative Fine-Tuning in Neural Network Pruning [57.28467469709369]
We investigate on designing a compact audio-visual wake word spotting (WWS) system by utilizing visual information.
We introduce a neural network pruning strategy via the lottery ticket hypothesis in an iterative fine-tuning manner (LTH-IF)
The proposed audio-visual system achieves significant performance improvements over the single-modality (audio-only or video-only) system under different noisy conditions.
arXiv Detail & Related papers (2022-02-17T08:26:25Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
We propose an AI-based CSI feedback based on an auto-encoder architecture that encodes the CSI at UE into a low-dimensional latent space and decodes it back at the base station.
Our simulation results show that the AI-based proposed architecture outperforms the state-of-the-art high-resolution linear combination codebook.
arXiv Detail & Related papers (2022-02-02T19:04:49Z) - Variational Autoencoders: A Harmonic Perspective [79.49579654743341]
We study Variational Autoencoders (VAEs) from the perspective of harmonic analysis.
We show that the encoder variance of a VAE controls the frequency content of the functions parameterised by the VAE encoder and decoder neural networks.
arXiv Detail & Related papers (2021-05-31T10:39:25Z) - Binarized Aggregated Network with Quantization: Flexible Deep Learning
Deployment for CSI Feedback in Massive MIMO System [22.068682756598914]
A novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance.
The elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations.
Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks.
arXiv Detail & Related papers (2021-05-01T22:50:25Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.