Risk Assessment for Machine Learning Models
- URL: http://arxiv.org/abs/2011.04328v1
- Date: Mon, 9 Nov 2020 10:50:50 GMT
- Title: Risk Assessment for Machine Learning Models
- Authors: Paul Schwerdtner, Florens Gre{\ss}ner, Nikhil Kapoor, Felix Assion,
Ren\'e Sass, Wiebke G\"unther, Fabian H\"uger, and Peter Schlicht
- Abstract summary: We develop and implement a method that allows to define deployment scenarios, test the machine learning model under the conditions specified in each scenario, and estimate the damage associated with the output of the machine learning model under test.
In particular, in our framework, the robustness of a machine learning model to random input corruptions, distributional shifts caused by a changing environment, and adversarial perturbations can be assessed.
- Score: 5.136418932626926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose a framework for assessing the risk associated with
deploying a machine learning model in a specified environment. For that we
carry over the risk definition from decision theory to machine learning. We
develop and implement a method that allows to define deployment scenarios, test
the machine learning model under the conditions specified in each scenario, and
estimate the damage associated with the output of the machine learning model
under test. Using the likelihood of each scenario together with the estimated
damage we define \emph{key risk indicators} of a machine learning model.
The definition of scenarios and weighting by their likelihood allows for
standardized risk assessment in machine learning throughout multiple domains of
application. In particular, in our framework, the robustness of a machine
learning model to random input corruptions, distributional shifts caused by a
changing environment, and adversarial perturbations can be assessed.
Related papers
- Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection [0.0]
We consider real-world problems arising in aviation and other safety-critical areas, and investigate their requirements for a certified model.
We establish a new framework towards deep learning certification based on (i) inherently safe design, and (ii) run-time error detection.
arXiv Detail & Related papers (2024-03-12T11:38:45Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
We focus on regression algorithms and the risk-assessment task of computing the probability of the true label lying inside an interval defined around the model's prediction.
We solve the risk-assessment problem using the conformal prediction approach, which provides prediction intervals that are guaranteed to contain the true label with a given probability.
arXiv Detail & Related papers (2023-10-05T13:57:24Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - When and How to Fool Explainable Models (and Humans) with Adversarial
Examples [1.439518478021091]
We explore the possibilities and limits of adversarial attacks for explainable machine learning models.
First, we extend the notion of adversarial examples to fit in explainable machine learning scenarios.
Next, we propose a comprehensive framework to study whether adversarial examples can be generated for explainable models.
arXiv Detail & Related papers (2021-07-05T11:20:55Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z) - A Hierarchy of Limitations in Machine Learning [0.0]
This paper attempts a comprehensive, structured overview of the specific conceptual, procedural, and statistical limitations of models in machine learning when applied to society.
Modelers themselves can use the described hierarchy to identify possible failure points and think through how to address them.
Consumers of machine learning models can know what to question when confronted with the decision about if, where, and how to apply machine learning.
arXiv Detail & Related papers (2020-02-12T19:39:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.