Generating Image Descriptions via Sequential Cross-Modal Alignment
Guided by Human Gaze
- URL: http://arxiv.org/abs/2011.04592v1
- Date: Mon, 9 Nov 2020 17:45:32 GMT
- Title: Generating Image Descriptions via Sequential Cross-Modal Alignment
Guided by Human Gaze
- Authors: Ece Takmaz, Sandro Pezzelle, Lisa Beinborn, Raquel Fern\'andez
- Abstract summary: We take as our starting point a state-of-the-art image captioning system.
We develop several model variants that exploit information from human gaze patterns recorded during language production.
Our experiments and analyses confirm that better descriptions can be obtained by exploiting gaze-driven attention.
- Score: 6.6358421117698665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When speakers describe an image, they tend to look at objects before
mentioning them. In this paper, we investigate such sequential cross-modal
alignment by modelling the image description generation process
computationally. We take as our starting point a state-of-the-art image
captioning system and develop several model variants that exploit information
from human gaze patterns recorded during language production. In particular, we
propose the first approach to image description generation where visual
processing is modelled $\textit{sequentially}$. Our experiments and analyses
confirm that better descriptions can be obtained by exploiting gaze-driven
attention and shed light on human cognitive processes by comparing different
ways of aligning the gaze modality with language production. We find that
processing gaze data sequentially leads to descriptions that are better aligned
to those produced by speakers, more diverse, and more natural${-}$particularly
when gaze is encoded with a dedicated recurrent component.
Related papers
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - Visual Storytelling with Question-Answer Plans [70.89011289754863]
We present a novel framework which integrates visual representations with pretrained language models and planning.
Our model translates the image sequence into a visual prefix, a sequence of continuous embeddings which language models can interpret.
It also leverages a sequence of question-answer pairs as a blueprint plan for selecting salient visual concepts and determining how they should be assembled into a narrative.
arXiv Detail & Related papers (2023-10-08T21:45:34Z) - Dense Text-to-Image Generation with Attention Modulation [49.287458275920514]
Existing text-to-image diffusion models struggle to synthesize realistic images given dense captions.
We propose DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle such dense captions.
We achieve similar-quality visual results with models specifically trained with layout conditions.
arXiv Detail & Related papers (2023-08-24T17:59:01Z) - CapText: Large Language Model-based Caption Generation From Image
Context and Description [0.0]
We propose and evaluate a new approach to generate captions from textual descriptions and context alone.
Our approach outperforms current state-of-the-art image-text alignment models like OSCAR-VinVL on this task on the CIDEr metric.
arXiv Detail & Related papers (2023-06-01T02:40:44Z) - Zero-shot Generation of Coherent Storybook from Plain Text Story using
Diffusion Models [43.32978092618245]
We present a novel neural pipeline for generating a coherent storybook from the plain text of a story.
We leverage a combination of a pre-trained Large Language Model and a text-guided Latent Diffusion Model to generate coherent images.
arXiv Detail & Related papers (2023-02-08T06:24:06Z) - eDiffi: Text-to-Image Diffusion Models with an Ensemble of Expert
Denoisers [87.52504764677226]
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis.
We train an ensemble of text-to-image diffusion models specialized for different stages synthesis.
Our ensemble of diffusion models, called eDiffi, results in improved text alignment while maintaining the same inference cost.
arXiv Detail & Related papers (2022-11-02T17:43:04Z) - Retrieval-Augmented Transformer for Image Captioning [51.79146669195357]
We develop an image captioning approach with a kNN memory, with which knowledge can be retrieved from an external corpus to aid the generation process.
Our architecture combines a knowledge retriever based on visual similarities, a differentiable encoder, and a kNN-augmented attention layer to predict tokens.
Experimental results, conducted on the COCO dataset, demonstrate that employing an explicit external memory can aid the generation process and increase caption quality.
arXiv Detail & Related papers (2022-07-26T19:35:49Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
Given a series of natural language captions, an agent must generate a sequence of images that correspond to the captions.
Prior work has introduced recurrent generative models which outperform synthesis text-to-image models on this task.
We present a number of improvements to prior modeling approaches, including the addition of a dual learning framework.
arXiv Detail & Related papers (2021-05-20T20:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.