Action State Update Approach to Dialogue Management
- URL: http://arxiv.org/abs/2011.04637v2
- Date: Tue, 10 Nov 2020 17:03:22 GMT
- Title: Action State Update Approach to Dialogue Management
- Authors: Svetlana Stoyanchev, Simon Keizer and Rama Doddipatla
- Abstract summary: We propose the action state update approach (ASU) for utterance interpretation.
Our goal is to interpret referring expressions in user input without a domain-specific natural language understanding component.
With both user-simulated and interactive human evaluations, we show that the ASU approach successfully interprets user utterances in a dialogue system.
- Score: 16.602804535683553
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Utterance interpretation is one of the main functions of a dialogue manager,
which is the key component of a dialogue system. We propose the action state
update approach (ASU) for utterance interpretation, featuring a statistically
trained binary classifier used to detect dialogue state update actions in the
text of a user utterance. Our goal is to interpret referring expressions in
user input without a domain-specific natural language understanding component.
For training the model, we use active learning to automatically select
simulated training examples. With both user-simulated and interactive human
evaluations, we show that the ASU approach successfully interprets user
utterances in a dialogue system, including those with referring expressions.
Related papers
- An Efficient Self-Learning Framework For Interactive Spoken Dialog Systems [18.829793635104608]
We introduce a general framework for ASR in dialog systems.
We show that leveraging our new framework compared to traditional training leads to relative WER reductions of close to 10% in real-world dialog systems.
arXiv Detail & Related papers (2024-09-16T17:59:50Z) - LEEETs-Dial: Linguistic Entrainment in End-to-End Task-oriented Dialogue systems [0.0]
We introduce methods for achieving dialogue entrainment in a GPT-2-based end-to-end task-oriented dialogue system.
We experiment with training instance weighting, entrainment-specific loss, and additional conditioning to generate responses that align with the user.
arXiv Detail & Related papers (2023-11-15T21:35:25Z) - Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
We release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent.
These dialogues reflect interesting dynamics of collaborative decision-making in task-oriented scenarios.
We propose a novel task of multi-user contextual query rewriting: to rewrite a task-oriented chat between two users as a concise task-oriented query.
arXiv Detail & Related papers (2023-10-31T14:12:07Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - Is MultiWOZ a Solved Task? An Interactive TOD Evaluation Framework with
User Simulator [37.590563896382456]
We propose an interactive evaluation framework for Task-Oriented Dialogue (TOD) systems.
We first build a goal-oriented user simulator based on pre-trained models and then use the user simulator to interact with the dialogue system to generate dialogues.
Experimental results show that RL-based TOD systems trained by our proposed user simulator can achieve nearly 98% inform and success rates.
arXiv Detail & Related papers (2022-10-26T07:41:32Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
We propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction.
USDA incorporates the sequential transitions of both content and act features in the dialogue to predict the user satisfaction.
Experimental results on four benchmark goal-oriented dialogue datasets show that the proposed method substantially and consistently outperforms existing methods on USE.
arXiv Detail & Related papers (2022-02-07T02:50:07Z) - Alexa Conversations: An Extensible Data-driven Approach for Building
Task-oriented Dialogue Systems [21.98135285833616]
Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation.
We present a new approach for building goal-oriented dialogue systems that is scalable, as well as data efficient.
arXiv Detail & Related papers (2021-04-19T07:09:27Z) - Interactive Teaching for Conversational AI [2.5259192787433706]
Current conversational AI systems aim to understand a set of pre-designed requests and execute related actions.
Motivated by how children learn their first language interacting with adults, this paper describes a new Teachable AI system.
It is capable of learning new language nuggets called concepts, directly from end users using live interactive teaching sessions.
arXiv Detail & Related papers (2020-12-02T04:08:49Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z) - Conversation Learner -- A Machine Teaching Tool for Building Dialog
Managers for Task-Oriented Dialog Systems [57.082447660944965]
Conversation Learner is a machine teaching tool for building dialog managers.
It enables dialog authors to create a dialog flow using familiar tools, converting the dialog flow into a parametric model.
It allows dialog authors to improve the dialog manager over time by leveraging user-system dialog logs as training data.
arXiv Detail & Related papers (2020-04-09T00:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.