Particle on the sphere: group-theoretic quantization in the presence of
a magnetic monopole
- URL: http://arxiv.org/abs/2011.04888v2
- Date: Sun, 20 Jun 2021 14:02:55 GMT
- Title: Particle on the sphere: group-theoretic quantization in the presence of
a magnetic monopole
- Authors: Rodrigo Andrade e Silva, Ted Jacobson
- Abstract summary: We consider the problem of quantizing a particle on a 2-sphere.
We construct the Hilbert space directly from the symmetry algebra.
We show how the Casimir invariants of the algebra determine the bundle topology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of quantizing a particle on a 2-sphere has been treated by
numerous approaches, including Isham's global method based on unitary
representations of a symplectic symmetry group that acts transitively on the
phase space. Here we reconsider this simple model using Isham's scheme,
enriched by a magnetic flux through the sphere via a modification of the
symplectic form. To maintain complete generality we construct the Hilbert space
directly from the symmetry algebra, which is manifestly gauge-invariant, using
ladder operators. In this way, we recover algebraically the complete
classification of quantizations, and the corresponding energy spectra for the
particle. The famous Dirac quantization condition for the monopole charge
follows from the requirement that the classical and quantum Casimir invariants
match. In an appendix we explain the relation between this approach and the
more common one that assumes from the outset a Hilbert space of wave functions
that are sections of a nontrivial line bundle over the sphere, and show how the
Casimir invariants of the algebra determine the bundle topology.
Related papers
- A Universal Kinematical Group for Quantum Mechanics [0.0]
In 1968, Dashen and Sharp obtained a certain singular Lie algebra of local densities and currents from canonical commutation relations in nonrelativistic quantum field theory.
The corresponding Lie group is infinite dimensional: the natural semidirect product of an additive group of scalar functions with a group of diffeomorphisms.
arXiv Detail & Related papers (2024-04-28T18:46:24Z) - Markovian quantum master equation with Poincar\'{e} symmetry [0.0]
We derive the Markovian quantum master equation (QME) for a relativistic massive spin-0 particle.
Introducing the field operator of the massive particle, we find that the field follows a dissipative Klein-Gordon equation.
This means that the microcausality condition is satisfied for the dissipative model of the massive particle.
arXiv Detail & Related papers (2023-12-07T06:26:30Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Isomorphism between the Bialynicki-Birula and the Landau-Peierls Fock
space quantization of the electromagnetic field in position representation [0.0]
We first present a summary of the quantization of the electromagnetic field in position space representation.
We use two main approaches: the Landau-Peierls approach in the Coulomb gauge and the Bialynicki-Birula approach.
We show that the two approches are completly equivalent.
arXiv Detail & Related papers (2022-12-12T12:26:12Z) - Integral Quantization for the Discrete Cylinder [0.456877715768796]
We show how to derive corresponding covariant integral quantizations from (weight) functions on the phase space.
We also look at the specific cases of coherent states built from shifted gaussians, Von Mises, Poisson, and Fej'er kernels.
arXiv Detail & Related papers (2022-08-19T21:23:43Z) - Holomorphic representation of quantum computations [0.0]
We study bosonic quantum computations using the Segal-Bargmann representation of quantum states.
We argue that this holomorphic representation is a natural one which gives a canonical description of bosonic quantum computing.
arXiv Detail & Related papers (2021-10-29T23:26:51Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.