Continual Learning of Control Primitives: Skill Discovery via
Reset-Games
- URL: http://arxiv.org/abs/2011.05286v1
- Date: Tue, 10 Nov 2020 18:07:44 GMT
- Title: Continual Learning of Control Primitives: Skill Discovery via
Reset-Games
- Authors: Kelvin Xu, Siddharth Verma, Chelsea Finn, Sergey Levine
- Abstract summary: We show how a single method can allow an agent to acquire skills with minimal supervision.
We do this by exploiting the insight that the need to "reset" an agent to a broad set of initial states for a learning task provides a natural setting to learn a diverse set of "reset-skills"
- Score: 128.36174682118488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning has the potential to automate the acquisition of
behavior in complex settings, but in order for it to be successfully deployed,
a number of practical challenges must be addressed. First, in real world
settings, when an agent attempts a task and fails, the environment must somehow
"reset" so that the agent can attempt the task again. While easy in simulation,
this could require considerable human effort in the real world, especially if
the number of trials is very large. Second, real world learning often involves
complex, temporally extended behavior that is often difficult to acquire with
random exploration. While these two problems may at first appear unrelated, in
this work, we show how a single method can allow an agent to acquire skills
with minimal supervision while removing the need for resets. We do this by
exploiting the insight that the need to "reset" an agent to a broad set of
initial states for a learning task provides a natural setting to learn a
diverse set of "reset-skills". We propose a general-sum game formulation that
balances the objectives of resetting and learning skills, and demonstrate that
this approach improves performance on reset-free tasks, and additionally show
that the skills we obtain can be used to significantly accelerate downstream
learning.
Related papers
- You Only Live Once: Single-Life Reinforcement Learning [124.1738675154651]
In many real-world situations, the goal might not be to learn a policy that can do the task repeatedly, but simply to perform a new task successfully once in a single trial.
We formalize this problem setting, where an agent must complete a task within a single episode without interventions.
We propose an algorithm, $Q$-weighted adversarial learning (QWALE), which employs a distribution matching strategy.
arXiv Detail & Related papers (2022-10-17T09:00:11Z) - Generalizing to New Tasks via One-Shot Compositional Subgoals [23.15624959305799]
The ability to generalize to previously unseen tasks with little to no supervision is a key challenge in modern machine learning research.
We introduce CASE which attempts to address these issues by training an Imitation Learning agent using adaptive "near future" subgoals.
Our experiments show that the proposed approach consistently outperforms the previous state-of-the-art compositional Imitation Learning approach by 30%.
arXiv Detail & Related papers (2022-05-16T14:30:11Z) - Automating Reinforcement Learning with Example-based Resets [19.86233948960312]
Existing reinforcement learning algorithms assume an episodic setting in which the agent resets to a fixed initial state distribution at the end of each episode.
We propose an extension to conventional reinforcement learning towards greater autonomy by introducing an additional agent that learns to reset in a self-supervised manner.
We apply our method to learn from scratch on a suite of simulated and real-world continuous control tasks and demonstrate that the reset agent successfully learns to reduce manual resets.
arXiv Detail & Related papers (2022-04-05T08:12:42Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
Value-accelerated Persistent Reinforcement Learning (VaPRL) generates a curriculum of initial states.
VaPRL reduces the interventions required by three orders of magnitude compared to episodic reinforcement learning.
arXiv Detail & Related papers (2021-07-27T16:39:45Z) - Reset-Free Reinforcement Learning via Multi-Task Learning: Learning
Dexterous Manipulation Behaviors without Human Intervention [67.1936055742498]
We show that multi-task learning can effectively scale reset-free learning schemes to much more complex problems.
This work shows the ability to learn dexterous manipulation behaviors in the real world with RL without any human intervention.
arXiv Detail & Related papers (2021-04-22T17:38:27Z) - Curriculum Learning with Hindsight Experience Replay for Sequential
Object Manipulation Tasks [1.370633147306388]
We present an algorithm that combines curriculum learning with Hindsight Experience Replay (HER) to learn sequential object manipulation tasks.
The algorithm exploits the recurrent structure inherent in many object manipulation tasks and implements the entire learning process in the original simulation without adjusting it to each source task.
arXiv Detail & Related papers (2020-08-21T08:59:28Z) - Planning to Explore via Self-Supervised World Models [120.31359262226758]
Plan2Explore is a self-supervised reinforcement learning agent.
We present a new approach to self-supervised exploration and fast adaptation to new tasks.
Without any training supervision or task-specific interaction, Plan2Explore outperforms prior self-supervised exploration methods.
arXiv Detail & Related papers (2020-05-12T17:59:45Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.