A Systematic Comparison of Encrypted Machine Learning Solutions for
Image Classification
- URL: http://arxiv.org/abs/2011.05296v2
- Date: Wed, 11 Nov 2020 12:31:55 GMT
- Title: A Systematic Comparison of Encrypted Machine Learning Solutions for
Image Classification
- Authors: Veneta Haralampieva and Daniel Rueckert and Jonathan Passerat-Palmbach
- Abstract summary: This work provides a comprehensive review of existing frameworks based on secure computing techniques in the context of private image classification.
Experiments were conducted using four state-of-the-art libraries implementing secure computing at the heart of the data science stack.
- Score: 11.6906656396618
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This work provides a comprehensive review of existing frameworks based on
secure computing techniques in the context of private image classification. The
in-depth analysis of these approaches is followed by careful examination of
their performance costs, in particular runtime and communication overhead.
To further illustrate the practical considerations when using different
privacy-preserving technologies, experiments were conducted using four
state-of-the-art libraries implementing secure computing at the heart of the
data science stack: PySyft and CrypTen supporting private inference via Secure
Multi-Party Computation, TF-Trusted utilising Trusted Execution Environments
and HE- Transformer relying on Homomorphic encryption.
Our work aims to evaluate the suitability of these frameworks from a
usability, runtime requirements and accuracy point of view. In order to better
understand the gap between state-of-the-art protocols and what is currently
available in practice for a data scientist, we designed three neural network
architecture to obtain secure predictions via each of the four aforementioned
frameworks. Two networks were evaluated on the MNIST dataset and one on the
Malaria Cell image dataset. We observed satisfying performances for TF-Trusted
and CrypTen and noted that all frameworks perfectly preserved the accuracy of
the corresponding plaintext model.
Related papers
- Semi-Supervised Multi-Task Learning Based Framework for Power System Security Assessment [0.0]
This paper develops a novel machine learning-based framework using Semi-Supervised Multi-Task Learning (SS-MTL) for power system dynamic security assessment.
The learning algorithm underlying the proposed framework integrates conditional masked encoders and employs multi-task learning for classification-aware feature representation.
Various experiments on the IEEE 68-bus system were conducted to validate the proposed method.
arXiv Detail & Related papers (2024-07-11T22:42:53Z) - When approximate design for fast homomorphic computation provides
differential privacy guarantees [0.08399688944263842]
Differential privacy (DP) and cryptographic primitives are popular countermeasures against privacy attacks.
In this paper, we design SHIELD, a probabilistic approximation algorithm for the argmax operator.
Even if SHIELD could have other applications, we here focus on one setting and seamlessly integrate it in the SPEED collaborative training framework.
arXiv Detail & Related papers (2023-04-06T09:38:01Z) - A Survey of Secure Computation Using Trusted Execution Environments [80.58996305474842]
This article provides a systematic review and comparison of TEE-based secure computation protocols.
We first propose a taxonomy that classifies secure computation protocols into three major categories, namely secure outsourced computation, secure distributed computation and secure multi-party computation.
Based on these criteria, we review, discuss and compare the state-of-the-art TEE-based secure computation protocols for both general-purpose computation functions and special-purpose ones.
arXiv Detail & Related papers (2023-02-23T16:33:56Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world.
Previous approaches design different networks on similar tasks separately, and they are difficult to apply to each other.
We introduce a unified framework to tackle these issues, term as UFO (UnifiedObject Framework for Co-Object Framework)
arXiv Detail & Related papers (2022-03-09T13:35:19Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Efficient CNN Building Blocks for Encrypted Data [6.955451042536852]
Homomorphic Encryption (FHE) is a promising technique to enable machine learning and inferencing.
We show that operational parameters of the chosen FHE scheme have a major impact on the design of the machine learning model.
Our empirical study shows that choice of aforementioned design parameters result in significant trade-offs between accuracy, security level, and computational time.
arXiv Detail & Related papers (2021-01-30T21:47:23Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.