E-commerce Query-based Generation based on User Review
- URL: http://arxiv.org/abs/2011.05546v1
- Date: Wed, 11 Nov 2020 04:58:31 GMT
- Title: E-commerce Query-based Generation based on User Review
- Authors: Yiren Liu, Kuan-Ying Lee
- Abstract summary: We propose a novel seq2seq based text generation model to generate answers to user's question based on reviews posted by previous users.
Given a user question and/or target sentiment polarity, we extract aspects of interest and generate an answer that summarizes previous relevant user reviews.
- Score: 1.484852576248587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing number of merchandise on e-commerce platforms, users tend
to refer to reviews of other shoppers to decide which product they should buy.
However, with so many reviews of a product, users often have to spend lots of
time browsing through reviews talking about product attributes they do not care
about. We want to establish a system that can automatically summarize and
answer user's product specific questions.
In this study, we propose a novel seq2seq based text generation model to
generate answers to user's question based on reviews posted by previous users.
Given a user question and/or target sentiment polarity, we extract aspects of
interest and generate an answer that summarizes previous relevant user reviews.
Specifically, our model performs attention between input reviews and target
aspects during encoding and is conditioned on both review rating and input
context during decoding. We also incorporate a pre-trained auxiliary rating
classifier to improve model performance and accelerate convergence during
training. Experiments using real-world e-commerce dataset show that our model
achieves improvement in performance compared to previously introduced models.
Related papers
- Centrality-aware Product Retrieval and Ranking [14.710718676076327]
This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries.
We curate samples from eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent.
We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search.
arXiv Detail & Related papers (2024-10-21T11:59:14Z) - Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation [26.214148426964794]
We introduce new datasets and evaluation methods that focus on the users' sentiments.
We construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews.
We propose to evaluate systems based on whether the generated explanations align well with the users' sentiments.
arXiv Detail & Related papers (2024-10-17T06:15:00Z) - What if you said that differently?: How Explanation Formats Affect Human Feedback Efficacy and User Perception [53.4840989321394]
We analyze the effect of rationales generated by QA models to support their answers.
We present users with incorrect answers and corresponding rationales in various formats.
We measure the effectiveness of this feedback in patching these rationales through in-context learning.
arXiv Detail & Related papers (2023-11-16T04:26:32Z) - Towards Personalized Review Summarization by Modeling Historical Reviews
from Customer and Product Separately [59.61932899841944]
Review summarization is a non-trivial task that aims to summarize the main idea of the product review in the E-commerce website.
We propose the Heterogeneous Historical Review aware Review Summarization Model (HHRRS)
We employ a multi-task framework that conducts the review sentiment classification and summarization jointly.
arXiv Detail & Related papers (2023-01-27T12:32:55Z) - Factual and Informative Review Generation for Explainable Recommendation [41.403493319602816]
Previous models' generated content often contain factual hallucinations.
Inspired by recent success in using retrieved content in addition to parametric knowledge for generation, we propose to augment the generator with a personalized retriever.
Experiments on Yelp, TripAdvisor, and Amazon Movie Reviews dataset show our model could generate explanations that more reliably entail existing reviews, are more diverse, and are rated more informative by human evaluators.
arXiv Detail & Related papers (2022-09-12T16:46:47Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Product Question Answering (PQA) on E-Commerce platforms has attracted increasing attention as it can act as an intelligent online shopping assistant.
It is insufficient to provide the same "completely summarized" answer to all customers, since many customers are more willing to see personalized answers with customized information only for themselves.
We propose a novel multi-perspective user preference model for generating personalized answers in PQA.
arXiv Detail & Related papers (2021-12-27T07:51:49Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
Recommendation reason generation plays a vital role in attracting customers' attention as well as improving user experience.
We propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users' interests.
Experimental results show that our model is superior to traditional generative models.
arXiv Detail & Related papers (2021-02-16T02:08:52Z) - Meaningful Answer Generation of E-Commerce Question-Answering [77.89755281215079]
In e-commerce portals, generating answers for product-related questions has become a crucial task.
In this paper, we propose a novel generative neural model, called the Meaningful Product Answer Generator (MPAG)
MPAG alleviates the safe answer problem by taking product reviews, product attributes, and a prototype answer into consideration.
arXiv Detail & Related papers (2020-11-14T14:05:30Z) - Context-aware Helpfulness Prediction for Online Product Reviews [34.47368084659301]
We propose a neural deep learning model that predicts the helpfulness score of a review.
This model is based on convolutional neural network (CNN) and a context-aware encoding mechanism.
We validated our model on human annotated dataset and the result shows that our model significantly outperforms existing models for helpfulness prediction.
arXiv Detail & Related papers (2020-04-27T18:19:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.