Griddly: A platform for AI research in games
- URL: http://arxiv.org/abs/2011.06363v3
- Date: Tue, 12 Jul 2022 18:40:29 GMT
- Title: Griddly: A platform for AI research in games
- Authors: Chris Bamford, Shengyi Huang, Simon Lucas
- Abstract summary: We present Griddly as a new platform for Game AI research.
Griddly provides a unique combination of highly customizable games, different observer types and an efficient C++ core engine.
We present a series of baseline experiments to study the effect of different observation configurations and generalization ability of RL agents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there have been immense breakthroughs in Game AI research,
particularly with Reinforcement Learning (RL). Despite their success, the
underlying games are usually implemented with their own preset environments and
game mechanics, thus making it difficult for researchers to prototype different
game environments. However, testing the RL agents against a variety of game
environments is critical for recent effort to study generalization in RL and
avoid the problem of overfitting that may otherwise occur. In this paper, we
present Griddly as a new platform for Game AI research that provides a unique
combination of highly configurable games, different observer types and an
efficient C++ core engine. Additionally, we present a series of baseline
experiments to study the effect of different observation configurations and
generalization ability of RL agents.
Related papers
- Two-Step Reinforcement Learning for Multistage Strategy Card Game [0.0]
This study introduces a two-step reinforcement learning (RL) strategy tailored for "The Lord of the Rings: The Card Game (LOTRCG)"
This research diverges from conventional RL methods by adopting a phased learning approach.
The paper also explores a multi-agent system, where distinct RL agents are employed for various decision-making aspects of the game.
arXiv Detail & Related papers (2023-11-29T01:31:21Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - TiKick: Toward Playing Multi-agent Football Full Games from Single-agent
Demonstrations [31.596018856092513]
Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
To the best of our knowledge, Tikick is the first learning-based AI system that can take over the multi-agent Google Research Football full game.
arXiv Detail & Related papers (2021-10-09T08:34:58Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - DeepCrawl: Deep Reinforcement Learning for Turn-based Strategy Games [137.86426963572214]
We introduce DeepCrawl, a fully-playable Roguelike prototype for iOS and Android in which all agents are controlled by policy networks trained using Deep Reinforcement Learning (DRL)
Our aim is to understand whether recent advances in DRL can be used to develop convincing behavioral models for non-player characters in videogames.
arXiv Detail & Related papers (2020-12-03T13:53:29Z) - The NetHack Learning Environment [79.06395964379107]
We present the NetHack Learning Environment (NLE), a procedurally generated rogue-like environment for Reinforcement Learning research.
We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL.
We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration.
arXiv Detail & Related papers (2020-06-24T14:12:56Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
We present Neural MMO, a massively multiagent game environment inspired by MMOs.
We discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO.
arXiv Detail & Related papers (2020-01-31T18:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.