Discovery of the Hidden State in Ionic Models Using a Domain-Specific
Recurrent Neural Network
- URL: http://arxiv.org/abs/2011.07388v1
- Date: Sat, 14 Nov 2020 21:13:41 GMT
- Title: Discovery of the Hidden State in Ionic Models Using a Domain-Specific
Recurrent Neural Network
- Authors: Shahriar Iravanian
- Abstract summary: We describe a recurrent neural network architecture designed specifically to encode ionic models.
The network is trained in two steps: first, it learns the theoretical model coded in a set of ODEs, and second, it is retrained on experimental data.
We tested the GNN networks using simulated ventricular action potential signals and showed that it could deduce physiologically-feasible alterations of ionic currents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ionic models, the set of ordinary differential equations (ODEs) describing
the time evolution of the state of excitable cells, are the cornerstone of
modeling in neuro- and cardiac electrophysiology. Modern ionic models can have
tens of state variables and hundreds of tunable parameters. Fitting ionic
models to experimental data, which usually covers only a limited subset of
state variables, remains a challenging problem. In this paper, we describe a
recurrent neural network architecture designed specifically to encode ionic
models. The core of the model is a Gating Neural Network (GNN) layer, capturing
the dynamics of classic (Hodgkin-Huxley) gating variables. The network is
trained in two steps: first, it learns the theoretical model coded in a set of
ODEs, and second, it is retrained on experimental data. The retrained network
is interpretable, such that its results can be incorporated back into the model
ODEs. We tested the GNN networks using simulated ventricular action potential
signals and showed that it could deduce physiologically-feasible alterations of
ionic currents. Such domain-specific neural networks can be employed in the
exploratory phase of data assimilation before further fine-tuning using
standard optimization techniques.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Discovering dynamical features of Hodgkin-Huxley-type model of
physiological neuron using artificial neural network [0.0]
We consider Hodgkin-Huxley-type system with two fast and one slow variables.
For these two systems we create artificial neural networks that are able to reproduce their dynamics.
For the bistable model it means that the network being trained only on one brunch of the solutions recovers another without seeing it during the training.
arXiv Detail & Related papers (2022-03-26T19:04:19Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Cubature Kalman Filter Based Training of Hybrid Differential Equation
Recurrent Neural Network Physiological Dynamic Models [13.637931956861758]
We show how we can approximate missing ordinary differential equations with known ODEs using a neural network approximation.
Results indicate that this RBSE approach to training the NN parameters yields better outcomes (measurement/state estimation accuracy) than training the neural network with backpropagation.
arXiv Detail & Related papers (2021-10-12T15:38:13Z) - Go with the Flow: Adaptive Control for Neural ODEs [10.265713480189484]
We describe a new module called neurally controlled ODE (N-CODE) designed to improve the expressivity of NODEs.
N-CODE modules are dynamic variables governed by a trainable map from initial or current activation state.
A single module is sufficient for learning a distribution on non-autonomous flows that adaptively drive neural representations.
arXiv Detail & Related papers (2020-06-16T22:21:15Z) - Neural Ordinary Differential Equation based Recurrent Neural Network
Model [0.7233897166339269]
differential equations are a promising new member in the neural network family.
This paper explores the strength of the ordinary differential equation (ODE) is explored with a new extension.
Two new ODE-based RNN models (GRU-ODE model and LSTM-ODE) can compute the hidden state and cell state at any point of time using an ODE solver.
Experiments show that these new ODE based RNN models require less training time than Latent ODEs and conventional Neural ODEs.
arXiv Detail & Related papers (2020-05-20T01:02:29Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
In this work we focus on a particular class of neural networks, i.e. the residual neural networks.
We analyze steady states and sensitivity with respect to the parameters of the network, namely the weights and the bias.
A modification of the microscopic dynamics, inspired by residual neural networks, leads to a Fokker-Planck formulation of the network.
arXiv Detail & Related papers (2020-01-07T13:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.