Target Guided Emotion Aware Chat Machine
- URL: http://arxiv.org/abs/2011.07432v2
- Date: Fri, 9 Apr 2021 07:36:47 GMT
- Title: Target Guided Emotion Aware Chat Machine
- Authors: Wei Wei, Jiayi Liu, Xianling Mao, Guibin Guo, Feida Zhu, Pan Zhou,
Yuchong Hu and Shanshan Feng
- Abstract summary: The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
- Score: 58.8346820846765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The consistency of a response to a given post at semantic-level and
emotional-level is essential for a dialogue system to deliver human-like
interactions. However, this challenge is not well addressed in the literature,
since most of the approaches neglect the emotional information conveyed by a
post while generating responses. This article addresses this problem by
proposing a unifed end-to-end neural architecture, which is capable of
simultaneously encoding the semantics and the emotions in a post and leverage
target information for generating more intelligent responses with appropriately
expressed emotions. Extensive experiments on real-world data demonstrate that
the proposed method outperforms the state-of-the-art methods in terms of both
content coherence and emotion appropriateness.
Related papers
- In-Depth Analysis of Emotion Recognition through Knowledge-Based Large Language Models [3.8153944233011385]
This paper contributes to the emerging field of context-based emotion recognition.
We propose an approach that combines emotion recognition methods with Bayesian Cue Integration.
We test this approach in the context of interpreting facial expressions during a social task, the prisoner's dilemma.
arXiv Detail & Related papers (2024-07-17T06:39:51Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - Affective Decoding for Empathetic Response Generation [8.391383696266704]
We propose a technique called Affective Decoding for empathetic response generation.
Our method can effectively incorporate emotion signals during each decoding step.
Our models are perceived to be more empathetic by human evaluations.
arXiv Detail & Related papers (2021-08-18T11:48:40Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
We propose an approach that relies on exemplars to cue the generative model on fine stylistic properties that signal empathy to the interlocutor.
We empirically show that these approaches yield significant improvements in empathetic response quality in terms of both automated and human-evaluated metrics.
arXiv Detail & Related papers (2021-06-22T14:02:33Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Acted vs. Improvised: Domain Adaptation for Elicitation Approaches in
Audio-Visual Emotion Recognition [29.916609743097215]
Key challenges in developing generalized automatic emotion recognition systems include scarcity of labeled data and lack of gold-standard references.
In this work, we regard the emotion elicitation approach as domain knowledge, and explore domain transfer learning techniques on emotional utterances.
arXiv Detail & Related papers (2021-04-05T15:59:31Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.