Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices
- URL: http://arxiv.org/abs/2011.07765v3
- Date: Mon, 17 Jan 2022 20:55:40 GMT
- Title: Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices
- Authors: Karen Lozano-M\'endez, Alejandro H. C\'asares, and Santiago F.
Caballero-Ben\'itez
- Abstract summary: We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum matter at ultra-low temperatures offers a testbed for analyzing and
controlling desired properties in strongly correlated systems. Under typical
conditions the nature of the atoms fixes the magnetic character of the system.
Beyond classical light potentials leading to optical lattices and short range
interactions, high-Q cavities introduce novel dynamics into the system via the
quantumness of light. Here we propose a theoretical model and we analyze it
using exact diagonalization and density matrix renormalization group
simulations. We explore the effects of cavity mediated long range magnetic
interactions and optical lattices in ultracold matter. We find that global
interactions modify the underlying magnetic character of the system while
introducing competition scenarios. Antiferromagnetic correlated bosonic matter
emerges in conditions beyond to what nature typically provides. These allow new
alternatives toward the design of robust mechanisms for quantum information
purposes, exploiting the properties of magnetic phases of strongly correlated
quantum matter.
Related papers
- Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Amorphous quantum magnets in a two-dimensional Rydberg atom array [44.99833362998488]
We propose to explore amorphous quantum magnets with an analog quantum simulator.
We first present an algorithm to generate amorphous quantum magnets, suitable for Rydberg simulators of the Ising model.
We then use semiclassical approaches to get a preliminary insight of the physics of the model.
arXiv Detail & Related papers (2024-02-05T10:07:10Z) - Aharonov-Bohm effect for confined matter in lattice gauge theories [0.0]
We study the dynamics of mesons residing in a ring-shaped lattice of mesoscopic size pierced by an effective magnetic field.
We find a new type of Aharonov-Bohm effect that goes beyond the particle-like effect and reflects the the features of the confining gauge potential.
arXiv Detail & Related papers (2023-04-25T10:51:42Z) - Cavity-renormalized quantum criticality in a honeycomb bilayer
antiferromagnet [0.3359875577705538]
We investigate the fate of a quantum critical antiferromagnet coupled to an optical cavity field.
Using unbiased quantum Monte Carlo simulations, we compute the scaling behavior of the magnetic structure factor.
Our microscopic model is based on realistic parameters for two-dimensional magnetic quantum materials.
arXiv Detail & Related papers (2023-02-16T19:00:45Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Basis-independent system-environment coherence is necessary to detect
magnetic field direction in an avian-inspired quantum magnetic sensor [77.34726150561087]
We consider an avian-inspired quantum magnetic sensor composed of two radicals with a third "scavenger" radical under the influence of a collisional environment.
We show that basis-independent coherence, in which the initial system-environment state is non-maximally mixed, is necessary for optimal performance.
arXiv Detail & Related papers (2020-11-30T17:19:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.