Slender Object Detection: Diagnoses and Improvements
- URL: http://arxiv.org/abs/2011.08529v4
- Date: Wed, 7 Apr 2021 02:35:15 GMT
- Title: Slender Object Detection: Diagnoses and Improvements
- Authors: Zhaoyi Wan, Yimin Chen, Sutao Deng, Kunpeng Chen, Cong Yao, Jiebo Luo
- Abstract summary: In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
- Score: 74.40792217534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we are concerned with the detection of a particular type of
objects with extreme aspect ratios, namely \textbf{slender objects}. In
real-world scenarios, slender objects are actually very common and crucial to
the objective of a detection system. However, this type of objects has been
largely overlooked by previous object detection algorithms. Upon our
investigation, for a classical object detection method, a drastic drop of
$18.9\%$ mAP on COCO is observed, if solely evaluated on slender objects.
Therefore, we systematically study the problem of slender object detection in
this work. Accordingly, an analytical framework with carefully designed
benchmark and evaluation protocols is established, in which different
algorithms and modules can be inspected and compared. \New Our study reveals
that effective slender object detection can be achieved ~\textbf{with none of}
(1) anchor-based localization; (2) specially designed box representations.
Instead, \textbf{the critical aspect of improving slender object detection is
feature adaptation}. It identifies and extends the insights of existing methods
that are previously underexploited. Furthermore, we propose a feature adaption
strategy that achieves clear and consistent improvements over current
representative object detection methods.
Related papers
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Cycle Consistency Driven Object Discovery [75.60399804639403]
We introduce a method that explicitly optimize the constraint that each object in a scene should be associated with a distinct slot.
By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance.
Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.
arXiv Detail & Related papers (2023-06-03T21:49:06Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing.
Recent years have witnessed remarkable progress in oriented object detection using deep learning techniques.
arXiv Detail & Related papers (2023-02-21T06:31:53Z) - Long Range Object-Level Monocular Depth Estimation for UAVs [0.0]
We propose several novel extensions to state-of-the-art methods for monocular object detection from images at long range.
Firstly, we propose Sigmoid and ReLU-like encodings when modeling depth estimation as a regression task.
Secondly, we frame the depth estimation as a classification problem and introduce a Soft-Argmax function in the calculation of the training loss.
arXiv Detail & Related papers (2023-02-17T15:26:04Z) - Focus-and-Detect: A Small Object Detection Framework for Aerial Images [1.911678487931003]
We propose a two-stage object detection framework called "Focus-and-Detect"
The first stage generates clusters of objects constituting the focused regions.
The second stage, which is also an object detector network, predicts objects within the focal regions.
Results indicate that the proposed two-stage framework achieves an AP score of 42.06 on VisDrone validation dataset.
arXiv Detail & Related papers (2022-03-24T10:43:56Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - Class-agnostic Object Detection [16.97782147401037]
We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes.
Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes.
We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain.
arXiv Detail & Related papers (2020-11-28T19:22:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.