Fault-Aware Robust Control via Adversarial Reinforcement Learning
- URL: http://arxiv.org/abs/2011.08728v2
- Date: Mon, 30 Nov 2020 06:30:25 GMT
- Title: Fault-Aware Robust Control via Adversarial Reinforcement Learning
- Authors: Fan Yang, Chao Yang, Di Guo, Huaping Liu, Fuchun Sun
- Abstract summary: We propose an adversarial reinforcement learning framework, which significantly increases robot fragility over joint damage cases.
We validate our algorithm on a three-fingered robot hand and a quadruped robot.
Our algorithm can be trained only in simulation and directly deployed on a real robot without any fine-tuning.
- Score: 35.16413579212691
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots have limited adaptation ability compared to humans and animals in the
case of damage. However, robot damages are prevalent in real-world
applications, especially for robots deployed in extreme environments. The
fragility of robots greatly limits their widespread application. We propose an
adversarial reinforcement learning framework, which significantly increases
robot robustness over joint damage cases in both manipulation tasks and
locomotion tasks. The agent is trained iteratively under the joint damage cases
where it has poor performance. We validate our algorithm on a three-fingered
robot hand and a quadruped robot. Our algorithm can be trained only in
simulation and directly deployed on a real robot without any fine-tuning. It
also demonstrates exceeding success rates over arbitrary joint damage cases.
Related papers
- HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Pedipulate: Enabling Manipulation Skills using a Quadruped Robot's Leg [11.129918951736052]
Legged robots have the potential to become vital in maintenance, home support, and exploration scenarios.
In this work, we explore pedipulation - using the legs of a legged robot for manipulation.
arXiv Detail & Related papers (2024-02-16T17:20:45Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Robot Vitals and Robot Health: Towards Systematically Quantifying
Runtime Performance Degradation in Robots Under Adverse Conditions [2.0625936401496237]
"Robot vitals" are indicators that estimate the extent of performance degradation faced by a robot.
"Robot health" is a metric that combines robot vitals into a single scalar value estimate of performance degradation.
arXiv Detail & Related papers (2022-07-04T19:26:13Z) - Fleet-DAgger: Interactive Robot Fleet Learning with Scalable Human
Supervision [72.4735163268491]
Commercial and industrial deployments of robot fleets often fall back on remote human teleoperators during execution.
We formalize the Interactive Fleet Learning (IFL) setting, in which multiple robots interactively query and learn from multiple human supervisors.
We propose Fleet-DAgger, a family of IFL algorithms, and compare a novel Fleet-DAgger algorithm to 4 baselines in simulation.
arXiv Detail & Related papers (2022-06-29T01:23:57Z) - Adversarial joint attacks on legged robots [3.480626767752489]
We address adversarial attacks on the actuators at the joints of legged robots trained by deep reinforcement learning.
In this study, we demonstrate that the adversarial perturbations to the torque control signals of the actuators can significantly reduce the rewards and cause walking instability in robots.
arXiv Detail & Related papers (2022-05-20T11:30:23Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - A Transferable Legged Mobile Manipulation Framework Based on Disturbance
Predictive Control [15.044159090957292]
Legged mobile manipulation, where a quadruped robot is equipped with a robotic arm, can greatly enhance the performance of the robot.
We propose a unified framework disturbance predictive control where a reinforcement learning scheme with a latent dynamic adapter is embedded into our proposed low-level controller.
arXiv Detail & Related papers (2022-03-02T14:54:10Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.