PassGoodPool: Joint Passengers and Goods Fleet Management with
Reinforcement Learning aided Pricing, Matching, and Route Planning
- URL: http://arxiv.org/abs/2011.08999v2
- Date: Thu, 11 Nov 2021 20:33:56 GMT
- Title: PassGoodPool: Joint Passengers and Goods Fleet Management with
Reinforcement Learning aided Pricing, Matching, and Route Planning
- Authors: Kaushik Manchella, Marina Haliem, Vaneet Aggarwal, and Bharat Bhargava
- Abstract summary: We present a demand aware fleet management framework for combined goods and passenger transportation.
Our proposed model is deployable independently within each vehicle as this minimizes computational costs associated with the growth of distributed systems.
- Score: 29.73314892749729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ubiquitous growth of mobility-on-demand services for passenger and goods
delivery has brought various challenges and opportunities within the realm of
transportation systems. As a result, intelligent transportation systems are
being developed to maximize operational profitability, user convenience, and
environmental sustainability. The growth of last mile deliveries alongside
ridesharing calls for an efficient and cohesive system that transports both
passengers and goods. Existing methods address this using static routing
methods considering neither the demands of requests nor the transfer of goods
between vehicles during route planning. In this paper, we present a dynamic and
demand aware fleet management framework for combined goods and passenger
transportation that is capable of (1) Involving both passengers and drivers in
the decision-making process by allowing drivers to negotiate to a mutually
suitable price, and passengers to accept/reject, (2) Matching of goods to
vehicles, and the multi-hop transfer of goods, (3) Dynamically generating
optimal routes for each vehicle considering demand along their paths, based on
the insertion cost which then determines the matching, (4) Dispatching idle
vehicles to areas of anticipated high passenger and goods demand using Deep
Reinforcement Learning (RL), (5) Allowing for distributed inference at each
vehicle while collectively optimizing fleet objectives. Our proposed model is
deployable independently within each vehicle as this minimizes computational
costs associated with the growth of distributed systems and democratizes
decision-making to each individual. Simulations on a variety of vehicle types,
goods, and passenger utility functions show the effectiveness of our approach
as compared to other methods that do not consider combined load transportation
or dynamic multi-hop route planning.
Related papers
- A methodological framework for Resilience as a Service (RaaS) in multimodal urban transportation networks [0.0]
This study aims to explore the management of public transport disruptions through resilience as a service strategies.
It develops an optimization model to effectively allocate resources and minimize the cost for operators and passengers.
The proposed model is applied to a case study in the Ile de France region, Paris and suburbs.
arXiv Detail & Related papers (2024-08-30T12:22:34Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
Navigating urban environments poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation.
This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city.
Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller.
Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain.
arXiv Detail & Related papers (2024-05-03T00:29:20Z) - Fair collaborative vehicle routing: A deep multi-agent reinforcement
learning approach [49.00137468773683]
Collaborative vehicle routing occurs when carriers collaborate through sharing their transportation requests and performing transportation requests on behalf of each other.
Traditional game theoretic solution concepts are expensive to calculate as the characteristic function scales exponentially with the number of agents.
We propose to model this problem as a coalitional bargaining game solved using deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2023-10-26T15:42:29Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
We introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios.
Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations.
arXiv Detail & Related papers (2023-06-09T20:12:02Z) - Learning-based Online Optimization for Autonomous Mobility-on-Demand
Fleet Control [8.020856741504794]
We study online control algorithms for autonomous mobility-on-demand systems.
We develop a novel hybrid enriched machine learning pipeline which learns online dispatching and rebalancing policies.
We show that our approach outperforms state-of-the-art greedy, and model-predictive control approaches.
arXiv Detail & Related papers (2023-02-08T09:40:30Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Incentivizing Efficient Equilibria in Traffic Networks with Mixed
Autonomy [17.513581783749707]
Vehicle platooning can potentially reduce traffic congestion by increasing road capacity via vehicle platooning.
We consider a network of parallel roads with two modes of transportation: (i) human drivers, who will choose the quickest route available to them, and (ii) a ride hailing service, which provides an array of autonomous vehicle route options, each with different prices, to users.
We formalize a model of vehicle flow in mixed autonomy and a model of how autonomous service users make choices between routes with different prices and latencies.
arXiv Detail & Related papers (2021-05-06T03:01:46Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
We present a dynamic, demand aware, and pricing-based vehicle-passenger matching and route planning framework.
Our framework is validated using the New York City Taxi dataset.
Experimental results show the effectiveness of our approach in real-time and large scale settings.
arXiv Detail & Related papers (2020-10-05T03:13:47Z) - FlexPool: A Distributed Model-Free Deep Reinforcement Learning Algorithm
for Joint Passengers & Goods Transportation [36.989179280016586]
This paper considers combining passenger transportation with goods delivery to improve vehicle-based transportation.
We propose FlexPool, a distributed model-free deep reinforcement learning algorithm that jointly serves passengers & goods workloads.
We show that FlexPool achieves 30% higher fleet utilization and 35% higher fuel efficiency in comparison to model-free approaches.
arXiv Detail & Related papers (2020-07-27T17:25:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.