Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification
- URL: http://arxiv.org/abs/2011.09066v1
- Date: Wed, 18 Nov 2020 03:32:27 GMT
- Title: Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification
- Authors: Weitao Wan, Jiansheng Chen, Cheng Yu, Tong Wu, Yuanyi Zhong,
Ming-Hsuan Yang
- Abstract summary: We propose a Gaussian mixture (GM) loss function for deep neural networks for visual classification.
With a classification margin and a likelihood regularization, the GM loss facilitates both high classification performance and accurate modeling of the feature distribution.
The proposed model can be implemented easily and efficiently without using extra trainable parameters.
- Score: 74.48695037007306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The softmax cross-entropy loss function has been widely used to train deep
models for various tasks. In this work, we propose a Gaussian mixture (GM) loss
function for deep neural networks for visual classification. Unlike the softmax
cross-entropy loss, our method explicitly shapes the deep feature space towards
a Gaussian Mixture distribution. With a classification margin and a likelihood
regularization, the GM loss facilitates both high classification performance
and accurate modeling of the feature distribution. The GM loss can be readily
used to distinguish abnormal inputs, such as the adversarial examples, based on
the discrepancy between feature distributions of the inputs and the training
set. Furthermore, theoretical analysis shows that a symmetric feature space can
be achieved by using the GM loss, which enables the models to perform robustly
against adversarial attacks. The proposed model can be implemented easily and
efficiently without using extra trainable parameters. Extensive evaluations
demonstrate that the proposed method performs favorably not only on image
classification but also on robust detection of adversarial examples generated
by strong attacks under different threat models.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Variational autoencoder with weighted samples for high-dimensional
non-parametric adaptive importance sampling [0.0]
We extend the existing framework to the case of weighted samples by introducing a new objective function.
In order to add flexibility to the model and to be able to learn multimodal distributions, we consider a learnable prior distribution.
We exploit the proposed procedure in existing adaptive importance sampling algorithms to draw points from a target distribution and to estimate a rare event probability in high dimension.
arXiv Detail & Related papers (2023-10-13T15:40:55Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning [24.10329164911317]
We propose an approach named Multiple Asymptotically Normal Distribution Attacks (MultiANDA)
We approximate the posterior distribution over the perturbations by taking advantage of the normality property of gradient ascent (SGA)
Our proposed method outperforms ten state-of-the-art black-box attacks on deep learning models with or without defenses.
arXiv Detail & Related papers (2022-09-24T08:57:10Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Asymptotic Behavior of Adversarial Training in Binary Classification [41.7567932118769]
Adversarial training is considered to be the state-of-the-art method for defense against adversarial attacks.
Despite being successful in practice, several problems in understanding performance of adversarial training remain open.
We derive precise theoretical predictions for the minimization of adversarial training in binary classification.
arXiv Detail & Related papers (2020-10-26T01:44:20Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Understanding Anomaly Detection with Deep Invertible Networks through
Hierarchies of Distributions and Features [4.25227087152716]
Convolutional networks learn similar low-level feature distributions when trained on any natural image dataset.
When the discriminative features between inliers and outliers are on a high-level, anomaly detection becomes particularly challenging.
We propose two methods to remove the negative impact of model bias and domain prior on detecting high-level differences.
arXiv Detail & Related papers (2020-06-18T20:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.