A Transfer Learning Based Active Learning Framework for Brain Tumor
Classification
- URL: http://arxiv.org/abs/2011.09265v1
- Date: Mon, 16 Nov 2020 21:11:40 GMT
- Title: A Transfer Learning Based Active Learning Framework for Brain Tumor
Classification
- Authors: Ruqian Hao, Khashayar Namdar, Lin Liu, Farzad Khalvati
- Abstract summary: We propose a novel transfer learning based active learning framework to reduce the annotation cost.
We employ a 2D slice-based approach to train and finetune our model on the Magnetic Resonance Imaging (MRI) training dataset of 203 patients.
With our proposed method, the model achieved Area Under Receiver Operating Characteristic (ROC) Curve (AUC) of 82.89% on a separate test dataset of 66 patients.
- Score: 10.437969366798411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain tumor is one of the leading causes of cancer-related death globally
among children and adults. Precise classification of brain tumor grade
(low-grade and high-grade glioma) at early stage plays a key role in successful
prognosis and treatment planning. With recent advances in deep learning,
Artificial Intelligence-enabled brain tumor grading systems can assist
radiologists in the interpretation of medical images within seconds. The
performance of deep learning techniques is, however, highly depended on the
size of the annotated dataset. It is extremely challenging to label a large
quantity of medical images given the complexity and volume of medical data. In
this work, we propose a novel transfer learning based active learning framework
to reduce the annotation cost while maintaining stability and robustness of the
model performance for brain tumor classification. We employed a 2D slice-based
approach to train and finetune our model on the Magnetic Resonance Imaging
(MRI) training dataset of 203 patients and a validation dataset of 66 patients
which was used as the baseline. With our proposed method, the model achieved
Area Under Receiver Operating Characteristic (ROC) Curve (AUC) of 82.89% on a
separate test dataset of 66 patients, which was 2.92% higher than the baseline
AUC while saving at least 40% of labeling cost. In order to further examine the
robustness of our method, we created a balanced dataset, which underwent the
same procedure. The model achieved AUC of 82% compared with AUC of 78.48% for
the baseline, which reassures the robustness and stability of our proposed
transfer learning augmented with active learning framework while significantly
reducing the size of training data.
Related papers
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Parameter-Efficient Methods for Metastases Detection from Clinical Notes [19.540079966780954]
The objective of this study is to automate the detection of metastatic liver disease from free-style computed tomography (CT) radiology reports.
Our research demonstrates that transferring knowledge using three approaches can improve model performance.
arXiv Detail & Related papers (2023-10-27T20:30:59Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Optimizing Brain Tumor Classification: A Comprehensive Study on Transfer
Learning and Imbalance Handling in Deep Learning Models [0.0]
We present a novel deep learning-based approach, called Transfer Learning-CNN, for brain tumor classification using MRI data.
By leveraging a publicly available Brain MRI dataset, the experiment evaluated various transfer learning models for classifying different tumor types.
The proposed strategy, which combines VGG-16 and CNN, achieved an impressive accuracy rate of 96%, surpassing alternative approaches significantly.
arXiv Detail & Related papers (2023-08-13T17:30:32Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
Brain tumor is one of the severe health complications which lead to decrease in life expectancy of the individuals.
Timely detection and prediction of brain tumors can be helpful to prevent death rates due to brain tumors.
Deep learning-based approaches have emerged as a promising solution to develop automated biomedical image exploration tools.
arXiv Detail & Related papers (2023-07-16T14:06:45Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.