Neural graph embeddings as explicit low-rank matrix factorization for
link prediction
- URL: http://arxiv.org/abs/2011.09907v3
- Date: Thu, 25 Aug 2022 19:17:36 GMT
- Title: Neural graph embeddings as explicit low-rank matrix factorization for
link prediction
- Authors: Asan Agibetov
- Abstract summary: We propose an improved approach to learning low-rank factorization embeddings that incorporate information from unlikely pairs of nodes.
Based on our results and observations we outline further steps that could improve the design of next graph embedding algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning good quality neural graph embeddings has long been achieved by
minimizing the point-wise mutual information (PMI) for co-occurring nodes in
simulated random walks. This design choice has been mostly popularized by the
direct application of the highly-successful word embedding algorithm word2vec
to predicting the formation of new links in social, co-citation, and biological
networks. However, such a skeuomorphic design of graph embedding methods
entails a truncation of information coming from pairs of nodes with low PMI. To
circumvent this issue, we propose an improved approach to learning low-rank
factorization embeddings that incorporate information from such unlikely pairs
of nodes and show that it can improve the link prediction performance of
baseline methods from 1.2% to 24.2%. Based on our results and observations we
outline further steps that could improve the design of next graph embedding
algorithms that are based on matrix factorization.
Related papers
- Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - A Simplified Framework for Contrastive Learning for Node Representations [2.277447144331876]
We investigate the potential of deploying contrastive learning in combination with Graph Neural Networks for embedding nodes in a graph.
We show that the quality of the resulting embeddings and training time can be significantly improved by a simple column-wise postprocessing of the embedding matrix.
This modification yields improvements in downstream classification tasks of up to 1.5% and even beats existing state-of-the-art approaches on 6 out of 8 different benchmarks.
arXiv Detail & Related papers (2023-05-01T02:04:36Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
We present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms.
We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms.
arXiv Detail & Related papers (2022-09-11T14:46:38Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Deep Graph Clustering via Dual Correlation Reduction [37.973072977988494]
We propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN)
In our method, we first design a siamese network to encode samples. Then by forcing the cross-view sample correlation matrix and cross-view feature correlation matrix to approximate two identity matrices, respectively, we reduce the information correlation in the dual-level.
In order to alleviate representation collapse caused by over-smoothing in GCN, we introduce a propagation regularization term to enable the network to gain long-distance information.
arXiv Detail & Related papers (2021-12-29T04:05:38Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
We propose a simple framework for amortized community detection.
We combine the expressive power of GNNs with recent methods for amortized clustering.
We evaluate several models from our framework on synthetic and real datasets.
arXiv Detail & Related papers (2020-10-29T16:18:48Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.