Robust Data Hiding Using Inverse Gradient Attention
- URL: http://arxiv.org/abs/2011.10850v4
- Date: Sun, 5 Sep 2021 13:06:54 GMT
- Title: Robust Data Hiding Using Inverse Gradient Attention
- Authors: Honglei Zhang, Hu Wang, Yuanzhouhan Cao, Chunhua Shen, Yidong Li
- Abstract summary: In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
- Score: 82.73143630466629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data hiding is the procedure of encoding desired information into the cover
image to resist potential noises while ensuring the embedded image has few
perceptual perturbations from the original one. Recently, with the tremendous
successes gained by deep neural networks in various fields, the researches of
data hiding with deep learning models have attracted an increasing number of
attentions. In the data hiding task, each pixel of cover images should be
treated differently since they have divergent tolerabilities. The neglect of
considering the sensitivity of each pixel will inevitably affect the model
robustness for information hiding. Targeting this problem, we propose a novel
deep data hiding scheme with Inverse Gradient Attention (IGA), combing the
ideas of adversarial learning and attention mechanism to endow different
sensitivities for different pixels. With the proposed component, the model can
spotlight pixels with more robustness for data hiding. Empirically, extensive
experiments show that the proposed model outperforms the state-of-the-art
methods on two prevalent datasets under multiple evaluations. Besides, we
further identify and discuss the connections between the proposed inverse
gradient attention and high-frequency regions within images.
Related papers
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - MODEL&CO: Exoplanet detection in angular differential imaging by learning across multiple observations [37.845442465099396]
Most post-processing methods build a model of the nuisances from the target observations themselves.
We propose to build the nuisance model from an archive of multiple observations by leveraging supervised deep learning techniques.
We apply the proposed algorithm to several datasets from the VLT/SPHERE instrument, and demonstrate a superior precision-recall trade-off.
arXiv Detail & Related papers (2024-09-23T09:22:45Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
We construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model.
Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization.
arXiv Detail & Related papers (2024-06-03T16:13:33Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Diffusion Facial Forgery Detection [56.69763252655695]
This paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images.
We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods.
The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%.
arXiv Detail & Related papers (2024-01-29T03:20:19Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
We introduce Disguise, a novel algorithm that seamlessly de-identifies facial images while ensuring the usability of the modified data.
Our method involves extracting and substituting depicted identities with synthetic ones, generated using variational mechanisms to maximize obfuscation and non-invertibility.
We extensively evaluate our method using multiple datasets, demonstrating a higher de-identification rate and superior consistency compared to prior approaches in various downstream tasks.
arXiv Detail & Related papers (2023-03-23T13:50:46Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - Multi-Perspective Anomaly Detection [3.3511723893430476]
We build upon the deep support vector data description algorithm and address multi-perspective anomaly detection.
We employ different augmentation techniques with a denoising process to deal with scarce one-class data.
We evaluate our approach on the new dices dataset using images from two different perspectives and also benchmark on the standard MNIST dataset.
arXiv Detail & Related papers (2021-05-20T17:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.