Learning Class Unique Features in Fine-Grained Visual Classification
- URL: http://arxiv.org/abs/2011.10951v2
- Date: Tue, 16 Mar 2021 13:43:02 GMT
- Title: Learning Class Unique Features in Fine-Grained Visual Classification
- Authors: Runkai Zheng, Zhijia Yu, Yinqi Zhang, Chris Ding, Hei Victor Cheng, Li
Liu
- Abstract summary: We propose to regularize the training of CNN by enforcing the uniqueness of the features to each category from an information theoretic perspective.
We present a Feature Redundancy Loss (FRL) based on normalized inner product between each selected feature map pair to complement the proposed minimax loss.
- Score: 20.59233720331779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major challenge in Fine-Grained Visual Classification (FGVC) is
distinguishing various categories with high inter-class similarity by learning
the feature that differentiate the details. Conventional cross entropy trained
Convolutional Neural Network (CNN) fails this challenge as it may suffer from
producing inter-class invariant features in FGVC. In this work, we innovatively
propose to regularize the training of CNN by enforcing the uniqueness of the
features to each category from an information theoretic perspective. To achieve
this goal, we formulate a minimax loss based on a game theoretic framework,
where a Nash equilibria is proved to be consistent with this regularization
objective. Besides, to prevent from a feasible solution of minimax loss that
may produce redundant features, we present a Feature Redundancy Loss (FRL)
based on normalized inner product between each selected feature map pair to
complement the proposed minimax loss. Superior experimental results on several
influential benchmarks along with visualization show that our method gives full
play to the performance of the baseline model without additional computation
and achieves comparable results with state-of-the-art models.
Related papers
- Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
We introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed.
Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
arXiv Detail & Related papers (2024-09-03T07:32:46Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
Few-shot class-incremental learning (FSCIL) has been a challenging problem as only a few training samples are accessible for each novel class in the new sessions.
We deal with this misalignment dilemma in FSCIL inspired by the recently discovered phenomenon named neural collapse.
We propose a neural collapse inspired framework for FSCIL. Experiments on the miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our proposed framework outperforms the state-of-the-art performances.
arXiv Detail & Related papers (2023-02-06T18:39:40Z) - Discriminability-enforcing loss to improve representation learning [20.4701676109641]
We introduce a new loss term inspired by the Gini impurity to minimize the entropy of individual high-level features.
Although our Gini loss induces highly-discriminative features, it does not ensure that the distribution of the high-level features matches the distribution of the classes.
Our empirical results show that integrating our novel loss terms into the training objective consistently outperforms the models trained with cross-entropy alone.
arXiv Detail & Related papers (2022-02-14T22:31:37Z) - A Compositional Feature Embedding and Similarity Metric for
Ultra-Fine-Grained Visual Categorization [16.843126268445726]
Fine-grained visual categorization (FGVC) aims at classifying objects with small inter-class variances.
This paper proposes a novel compositional feature embedding and similarity metric ( CECS) for ultra-fine-grained visual categorization.
Experimental results on two ultra-FGVC datasets and one FGVC dataset with recent benchmark methods consistently demonstrate that the proposed CECS method achieves the state-the-art performance.
arXiv Detail & Related papers (2021-09-25T15:05:25Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Frequency-aware Discriminative Feature Learning Supervised by
Single-Center Loss for Face Forgery Detection [89.43987367139724]
Face forgery detection is raising ever-increasing interest in computer vision.
Recent works have reached sound achievements, but there are still unignorable problems.
A novel frequency-aware discriminative feature learning framework is proposed in this paper.
arXiv Detail & Related papers (2021-03-16T14:17:17Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
We investigate whether applying contrastive learning to fine-tuning would bring further benefits.
We propose Contrast-regularized tuning (Core-tuning), a novel approach for fine-tuning contrastive self-supervised visual models.
arXiv Detail & Related papers (2021-02-12T16:31:24Z) - Equalization Loss for Long-Tailed Object Recognition [109.91045951333835]
State-of-the-art object detection methods still perform poorly on large vocabulary and long-tailed datasets.
We propose a simple but effective loss, named equalization loss, to tackle the problem of long-tailed rare categories.
Our method achieves AP gains of 4.1% and 4.8% for the rare and common categories on the challenging LVIS benchmark.
arXiv Detail & Related papers (2020-03-11T09:14:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.