A Population-based Hybrid Approach to Hyperparameter Optimization for
Neural Networks
- URL: http://arxiv.org/abs/2011.11062v2
- Date: Fri, 27 Nov 2020 12:58:40 GMT
- Title: A Population-based Hybrid Approach to Hyperparameter Optimization for
Neural Networks
- Authors: Marcello Serqueira, Pedro Gonz\'alez, Eduardo Bezerra
- Abstract summary: HBRKGA is a hybrid approach that combines the Biased Random Key Genetic Algorithm with a Random Walk technique to search the hyper parameter space efficiently.
Results showed that HBRKGA could find hyper parameter configurations that outperformed the baseline methods in six out of eight datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, large amounts of data have been generated, and computer
power has kept growing. This scenario has led to a resurgence in the interest
in artificial neural networks. One of the main challenges in training effective
neural network models is finding the right combination of hyperparameters to be
used. Indeed, the choice of an adequate approach to search the hyperparameter
space directly influences the accuracy of the resulting neural network model.
Common approaches for hyperparameter optimization are Grid Search, Random
Search, and Bayesian Optimization. There are also population-based methods such
as CMA-ES. In this paper, we present HBRKGA, a new population-based approach
for hyperparameter optimization. HBRKGA is a hybrid approach that combines the
Biased Random Key Genetic Algorithm with a Random Walk technique to search the
hyperparameter space efficiently. Several computational experiments on eight
different datasets were performed to assess the effectiveness of the proposed
approach. Results showed that HBRKGA could find hyperparameter configurations
that outperformed (in terms of predictive quality) the baseline methods in six
out of eight datasets while showing a reasonable execution time.
Related papers
- Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
We introduce a new class of HPO method and explore how the low-rank factorization of intermediate layers of a convolutional network can be used to define an analytical response surface.
We quantify how this surface behaves as a surrogate to model performance and can be solved using a trust-region search algorithm, which we call autoHyper.
arXiv Detail & Related papers (2021-11-28T05:27:34Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNP is a scalable method that allows for real-time interactive exploration of projection methods by training neural network approximations.
We evaluate the performance of the HyperNP across three datasets in terms of performance and speed.
arXiv Detail & Related papers (2021-06-25T17:28:14Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
We propose a new benchmarking protocol to evaluate both end-to-end efficiency and data-addition training efficiency.
A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search.
We then apply the proposed benchmarking framework to 7s and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining.
arXiv Detail & Related papers (2020-10-19T21:46:39Z) - A Study of Genetic Algorithms for Hyperparameter Optimization of Neural
Networks in Machine Translation [0.0]
We propose an automatic tuning method modeled after Darwin's Survival of the Fittest Theory via a Genetic Algorithm.
Research results show that the proposed method, a GA, outperforms a random selection of hyper parameters.
arXiv Detail & Related papers (2020-09-15T02:24:16Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
We propose an efficient and robust bandit-based algorithm called Sub-Sampling (SS) in the scenario of hyper parameter search evaluation.
We also develop a novel hyper parameter optimization algorithm called BOSS.
Empirical studies validate our theoretical arguments of SS and demonstrate the superior performance of BOSS on a number of applications.
arXiv Detail & Related papers (2020-07-11T03:15:21Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
We build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets.
We use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper- parameter search space to select a better combination.
arXiv Detail & Related papers (2020-06-03T08:53:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.